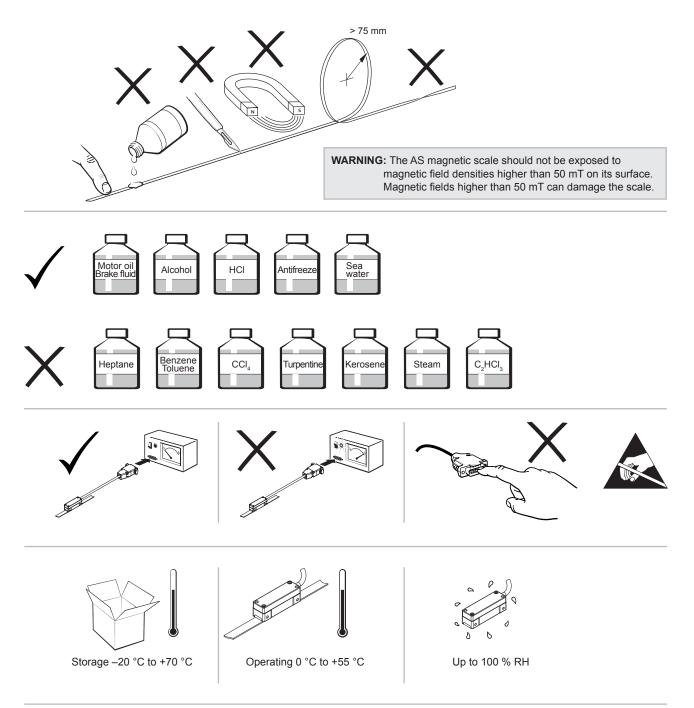


LA11 absolute magnetic encoder system

LA11 is an absolute magnetic linear encoder system designed for motion control applications as a position and velocity control loop feedback element.

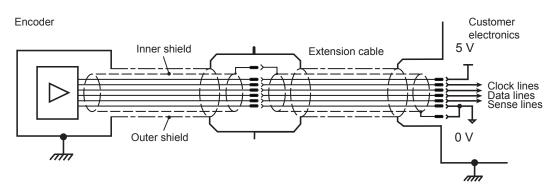
The encoder system is highly reliable due to contactless absolute measuring principle, built-in safety algorithms and high quality materials/components used.

The measuring standard is a magnetic scale which consists of a stainless steel substrate with an elasto-ferrite layer. The elasto-ferrite layer is magnetised with two tracks. The incremental track is magnetised with 2 mm long (alternating south and north) poles and the absolute track is magnetised with a pseudo random binary sequence (PRBS) absolute code with 13 bit length. The elasto-ferrite layer is immune to chemicals commonly found in industry.

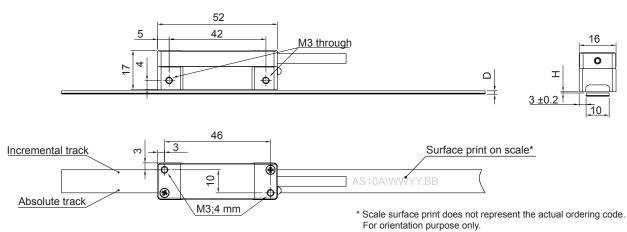

The readhead includes Hall sensor arrays for PRBS track reading, an AMR sensor for incremental track reading, interpolation electronics and custom logic circuitry. The data from the Hall arrays and interpolator are processed in the internal MCU using special algorithms to determine the absolute position.

The electronics design provides short response and recovery times.

Diagnostic information is available through a serial communication channel and status LED.


- True absolute system
- Suitable for highly dynamic control loops
- Small footprint
- High accuracy
- Resolutions up to 0.244 µm
- Axis lengths up to 16.3 m
- Speeds up to 7 m/s at 0.977 μm resolution
- Integral status LED
- Synchronous (SSI, SPI, BiSS) communication protocols available
- Parallel incremental output (analogue ∕ or digital □)
- Double shielded, drag-chain compatible cable
- Simple and fast installation
- Robust measuring principle
- Excellent degree of protection to IP68

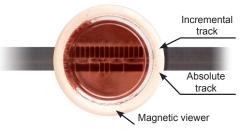
Storage and handling



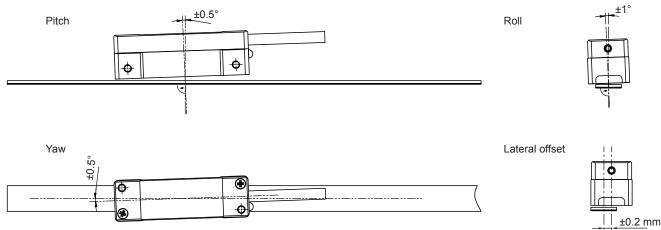
Shield connection

Dimensions

Dimensions and tolerance in mm.


	Magnetic scal	e thickness (D)	Ride height (H)					
	Standard option	Standard option Option 01**						
With back-adhesion tape	1.5 ±0.15	1.7 ±0.15	0.1 – 0.6					
With back-adhesion tape, with cover foil	1.6 ±0.15	1.8 ±0.15	0.1 - 0.5					
No back-adhesion tape	1.3 ±0.15	1.5 ±0.15	0.1 – 0.6					
No back-adhesion tape, with cover foil	1.4 ±0.15	1.6 ±0.15	0.1 – 0.5					
No back-adhesion tape, sides prepared for TRS	1.3 ±0.15	1.5 ±0.15	0.1 - 0.4					
No back-adhesion tape, sides prepared for TRS, with cover foil	1.4 ±0.15	1.6 ±0.15	0.1 – 0.3					

** Check ordering code on page 18 for more information.


A RENISHAW & associate company

Readhead orientation

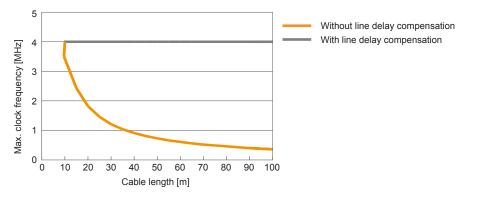
Orientation of the readhead relative to AS10 magnetic scale should be according to the dimensions drawing <u>on page 3</u>. For reference use the surface print on AS scale or magnet viewer (see right image).

Installation tolerances

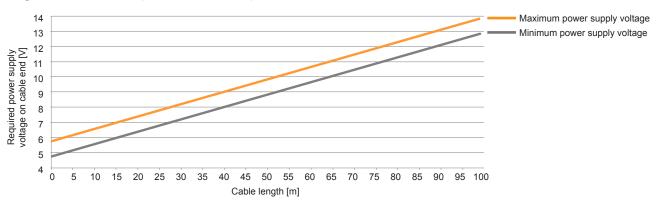
LED	Communication	Status						
Green	Yes	Valid position data						
Green flashing	No	Valid position data						
Orange	Yes	Valid position data, > 80 % of max. temperature						
Orange flashing	No	Valid position data, > 80 % of max. temperature						
Red	Yes	Invalid position data						
Red flashing	No	Invalid position data						

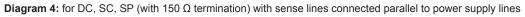
By special request the status LEDs can be turned off. Please contact sales@rls.si.

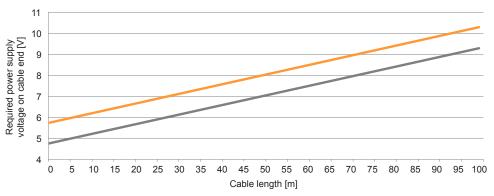
For readhead with BiSS communication interface: When there is no communication between controller and encoder the alarm status on LED is not updated, with the exception of temperature alarm. LED shows the alarm status of the last communication request.


Technical specifications

Maximun											
	n length for	AS scale	16.3 m								
Incremer	ntal pole ler	ngth	2 mm								
Maximun	n speed for	parallel inci	remental sig	gnals 🗔							
Ordering code	Resolution (µm)	Interpolation factor				M	aximum speed (m/s)				
13B	~0.244	8,192	1.82	0.91	0.23	0.11	0.06	0.03	0.02	0.01	0.01
12B	~0.488	4,096	3.65	1.82	0.46	0.23	0.12	0.06	0.05	0.02	0.01
11B	~0.976	2,048	7	3.65	0.91	0.46	0.24	0.12	0.10	0.05	0.02
2D0	1	2,000	7	3.73	0.93	0.47	0.24	0.12	0.10	0.05	0.02
10B	~1.953	1,024	7	7	1.82	0.91	0.48	0.24	0.19	0.10	0.05
09B	~3.906	512	7	7	3.65	1.82	0.95	0.49	0.38	0.19	0.10
08B	~7.812	256	7	7	7	3.65	1.90	0.97	0.77	0.39	0.19
07B	15.625	128	7	7	7	7	3.81	1.94	1.53	0.77	0.39
06B	31.25	64	7	7	7	7	7	3.89	3.07	1.55	0.78
05B	62.5	32	7	7	7	7	7	7	6.14	3.10	1.56
04B	125	16	7	7	7	7	7	7	7	6.19	3.11
	Edge	e separation (µs)		0.12	0.50	1	2	4	5	10	20
Ma	aximum count	frequency (MHz)		8	2	1	0.50	0.25	0.20	0.10	0.05
		Ordering code	К	Α	В	С	D	E	F	G	Н
System a	accuracy	:	±40 µm/m								
Short rar	nge accurad	cy ·	< ±10 µm/10) mm (see d	iagram 5)						
Coefficie expansio	ent of therm on (CTE)	al	11 ±1 µm/m/	κ							
•	· /										
Repeatak	bility		Unit of resol	ution							
-	-		Unit of resol < 2 µm at 0.		eight (see o	diagram 1)					
Hysteres	sis				eight (see o	diagram 1)					
Hysteres Electrica	is I data			1 mm ride h om 4.75 V t n 3, 4, 5, 6)	o 5.75 V - \	/oltage on r	eadhead, co	onsider volta	age drop ov	er cable	
Hysteres Electrica Power su	is I data		< 2 µm at 0. Option A: Fr (see diagran	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3	o 5.75 V - \	/oltage on r	eadhead, co	onsider volta	age drop ov	er cable	
Hysteres Electrica Power su Reverse	is I data upply	Dtection	< 2 µm at 0. Option A: Fro (see diagran Option B: Fr	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3	o 5.75 V - \	/oltage on r	eadhead, co	onsider volt	age drop ov	er cable	
Hysteres Electrica Power su Reverse Set-up tin Power co	is I data upply polarity pro	otection vitch-on	< 2 µm at 0. Option A: Fr (see diagran Option B: Fr For option A	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5	0 5.75 V - V 0 V (see dia V power si	/oltage on r	eadhead, co	onsider volt	age drop ov	er cable	
Hysteres Electrica Power su Reverse Set-up tin Power co load)	is I data upply polarity pro me after sw	otection vitch-on	< 2 µm at 0. Option A: Fro (see diagram Option B: Fr For option A < 350 ms Option A: <	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7	0 5.75 V - \ 0 V (see dia V power si	/oltage on r	eadhead, co	onsider volt	age drop ov	er cable	
Hysteres Electrica Power su Reverse Set-up tin Power co load) Voltage d	is I data upply polarity pro me after sw pnsumption	otection vitch-on	< 2 µm at 0. Option A: Fro (see diagram Option B: Fr For option A < 350 ms Option A: < 1 Option B: se	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7	0 5.75 V - \ 0 V (see dia V power si	/oltage on r	eadhead, co	onsider volta	age drop ov	er cable	
Set-up tir Power co load) Voltage d Mechanio	is I data upply polarity pro me after sw pnsumption	otection vitch-on n (without able	< 2 µm at 0. Option A: Fri (see diagran Option B: Fr For option A < 350 ms Option A: < Option B: se ~ 80 mV/m -	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa	0 5.75 V - \ 0 V (see dia V power se	/oltage on r agram 7) upply				er cable	
Hysteres Electrica Power su Reverse Set-up tin Power co oad) Voltage d Mechanic Mass	is I data upply polarity pro me after sw pnsumption	otection ritch-on n (without able	< 2 µm at 0. Option A: Fro (see diagram Option B: Fr For option A < 350 ms Option A: < 7 Option B: se ~ 80 mV/m - Readhead (v	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa	0 5.75 V - V 0 V (see dia V power si d	/oltage on r agram 7) upply nector) 41 g	, magnetic s	scale 60 g/r	n		
Hysteres Electrica Power su Reverse Set-up tin Power co load) Voltage d Mechanic Mass Cable	is I data Ipply polarity pro me after sw onsumption drop over c cal data	otection	< 2 µm at 0. Option A: Fri (see diagran Option B: Fr For option A < 350 ms Option A: < Option B: se ~ 80 mV/m -	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa	0 5.75 V - V 0 V (see dia V power si d	/oltage on r agram 7) upply nector) 41 g	, magnetic s	scale 60 g/r	n		
Hysteres Electrica Power su Reverse Set-up tin Power co load) Voltage d Mechanic Mass Cable Environn	is I data upply polarity pro me after sw onsumption drop over ca cal data	otection	< 2 µm at 0. Option A: Fri (see diagran Option B: Fr For option A < 350 ms Option A: < Option A: < 0ption B: se ~ 80 mV/m - Readhead (v PUR high fie	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa with 1 m cat	0 5.75 V - V 0 V (see dia V power si d ble, no conr drag-chair	/oltage on r agram 7) upply nector) 41 g	, magnetic s	scale 60 g/r	n		
Hysteres Electrica Power su Reverse Set-up tin Power co load) Voltage d Mechanic Mass Cable Environn	is I data upply polarity pro me after sw onsumption drop over ca cal data	otection ritch-on n (without able	< 2 µm at 0. Option A: Fro (see diagram Option B: Fr For option A < 350 ms Option A: < 7 Option B: se ~ 80 mV/m - Readhead (v PUR high fle	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa	0 5.75 V - V 0 V (see dia V power so d ble, no conr drag-chair	/oltage on r agram 7) upply nector) 41 g	, magnetic s	scale 60 g/r	n		
Hysteres Electrica Power su Reverse Set-up tin Power co oad) Voltage d Mechanic Mass Cable Environn Femperat	is I data upply polarity pro me after sw onsumption drop over ca cal data	otection ritch-on n (without	< 2 µm at 0. Option A: Fro (see diagram Option B: Fr For option A < 350 ms Option A: < 7 Option B: se ~ 80 mV/m - Readhead (v PUR high fle	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa with 1 m cat exible cable, 0 °C to +58 -20 °C to +7	0 5.75 V - V 0 V (see dia V power si d ble, no conr drag-chair 5 °C 70 °C	/oltage on r agram 7) upply nector) 41 g	, magnetic s	scale 60 g/r	n		
Hysteres Electrica Power su Reverse Set-up tin Power co oad) Voltage d Mechanic Mass Cable Environn Temperat	is il data upply polarity pro me after sw onsumption drop over c cal data mental data ture	otection	2 µm at 0. Option A: Fri (see diagram Option B: Fr For option A < 350 ms Option A: < 100000000000000000000000000000000000	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa with 1 m cat exible cable, 0 °C to +55 -20 °C to +7 C 60068-2-	0 5.75 V - V 0 V (see dia V power si d ble, no conr drag-chair 5 °C 70 °C 6)	/oltage on r agram 7) upply nector) 41 g	, magnetic s	scale 60 g/r	n		
Hysteres Electrica Power su Reverse Set-up tin Power co oad) Voltage d Mechanic Mass Cable Environn Femperat Vibration Shocks (is il data upply polarity pro me after sw onsumption drop over c cal data mental data ture hs (55 Hz to [11 ms)	otection vitch-on n (without able	< 2 µm at 0. Option A: Fri (see diagran Option B: Fr For option A < 350 ms Option A: < Option B: se ~ 80 mV/m - Readhead (v PUR high fle Operating Storage - 300 m/s ² (IE	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa with 1 m cat exible cable, 0 °C to +55 -20 °C to +7 C 60068-2-1 C 60068-2-1	0 5.75 V - V 0 V (see dia V power st d d ble, no conr drag-chair 5° C 70^{\circ}C 6) 27)	/oltage on r agram 7) upply nector) 41 g	, magnetic s	scale 60 g/r	n		
Hysteres Electrica Power su Reverse Set-up tin Power co load) Voltage d Mechanic Mass Cable Environn Temperat	is il data upply polarity pro me after sw onsumption drop over ca cal data mental data ture ns (55 Hz to (11 ms)	otection ritch-on n (without able	2 µm at 0. Option A: Fro (see diagram Option B: Fr For option A 350 ms Option A: < 7 Option B: se 80 mV/m - Readhead (v PUR high fle Operating Storage - 300 m/s² (IE 300 m/s² (IE	1 mm ride h om 4.75 V t n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa with 1 m cat exible cable, -20 °C to +5 C 60068-2 C 6006	0 5.75 V - V 0 V (see dia V power si d ble, no conr drag-chair 5 °C 70 °C 6) 27) ermitted) arly: ESD: I urge: IEC 6	/oltage on r agram 7) upply nector) 41 g n compatible EC 61000-4 31000-4-5; (, magnetic s e, double-sh I-2; EM fielc Conducted d	scale 60 g/r ielded. Rea ls: IEC 6100 disturbance	n Id more <u>on</u> 00-4-3; s: IEC 6100	<u>page 9.</u> 0-4-6;	
Hysteres Electrica Power su Reverse Set-up tin Power co oad) Voltage d Mechanic Mass Cable Environn Femperat Vibration Shocks (Humidity	is il data upply polarity pro me after sw onsumption drop over ca cal data nental data ture hs (55 Hz to (11 ms) nunity	2000 Hz)	2 µm at 0. Option A: Fro (see diagram Option B: Fr For option A < 350 ms Option A: < 7 Option B: se ~ 80 mV/m - Readhead (v PUR high fle Operating Storage - 300 m/s ² (IE 300 m/s ² (IE 100 % (conce) Eurst: IEC 6	1 mm ride h om 4.75 V ti n 3, 4, 5, 6) om 8 V to 3 only 150 mA at 5 e diagram 7 without loa with 1 m cat exible cable, 0 °C to +58 -20 °C to +7 C 60068-2-1 C 60068-2-1 Einsation pe S-2 (particula 1000-4-4; S ency magne	o 5.75 V - V 0 V (see dia V power si d ole, no conr drag-chair 5 °C 70 °C 6) 27) ermitted) arly: ESD: I urge: IEC 6 etic fields: II	/oltage on r agram 7) upply nector) 41 g n compatible EC 61000-4 31000-4-5; (EC 61000-4	, magnetic s e, double-sh I-2; EM field Conducted d 8; Pulse m	scale 60 g/r ielded. Rea ls: IEC 610 disturbance agnetic fiel	n d more <u>on</u> do-4-3; s: IEC 6100 ds: IEC 610	<u>page 9.</u> 0-4-6;	




Diagram 2: Maximum clock frequency vs. cable length



Required power supply voltage on cable end vs. overall cable length

Diagram 5: for DA, DI, SB, SI, SQ, SR (with 150 Ω termination)

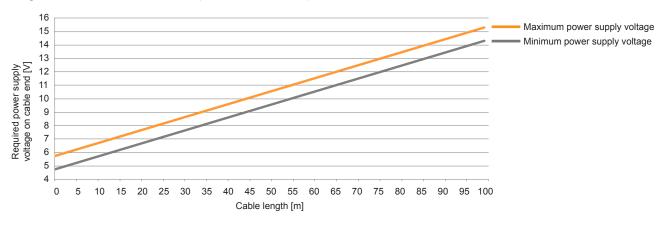
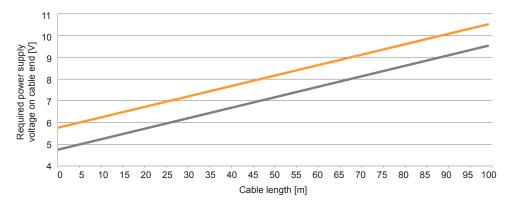
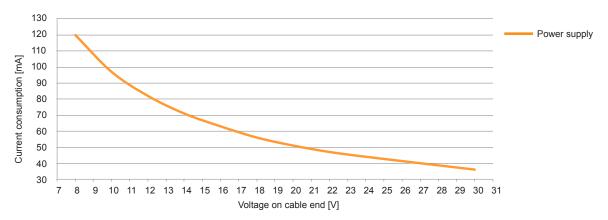




Diagram 6: for DA, DI, SB, SI, SQ, SR (with 150 Ω termination) with sense lines connected parallel to power supply lines

Current consumption vs. voltage on cable end

Diagram 7: Current consumption vs. voltage on cable end (option B)

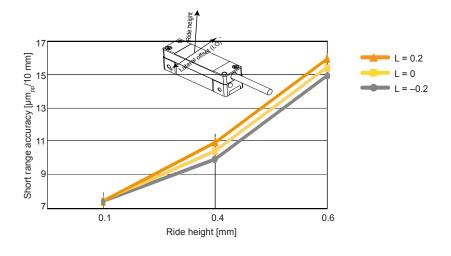
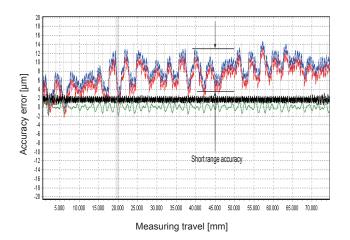
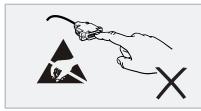



Diagram 8: Short range accuracy vs. ride height-lateral offset (LO) as a parameter - typical

Diagram 9: Definition of short range accuracy

measured error during movement in positive direction (μm)
 measured error during movement in negative direction (μm)

measured hysteresis (µm)


FFT

Electrical connections

Cable specifications

Number of wires	8	12
Communication interface	DC, SC, SP	DA, DI, SB, SI, SQ, SR
Outer diameter	4.2 mm ±0.2 mm	4.5 mm ±0.2 mm
Jacket material	Extruded polyu	irethane (PUR)
White wire	0.14 mm², 26 AWG, 0.13 Ω/m	0.08 mm ² 28 AM/C 0.22 O/m
Other wires	$0.05~mm^2$, 30 AWG, $0.35~\Omega/m$	0.08 mm², 28 AWG, 0.23 Ω/m
Durability	20 million cycles at 25 mm bend radius	20 million cycles at 50 mm bend radius
Weight	34 g/m nominal	38 g/m nominal
Dynamic bend (internal) radius	25 mm	50 mm
Static bend (internal) radius	10 mm	10 mm



WARNING!

ESD protection

Readhead is ESD sensitive - handle with care. Do not touch wires or connector pins without proper ESD protection or outside of ESD controlled environment.

15 pin D type plug

Pin	Wire colour (for SC, DC, SP)	Wire colour	BiSS	BiSS SSI				
Case	Outer shield	Outer shield	Encoder/machine case (Earth connection)	Encoder/machine case (Earth connection)	Encoder/machine case (Earth connection)			
1			Inner shield					
2	White	White		0 V (GND) supply				
3	Green	Green	MA+	Clock+	Clock			
4	Yellow	Yellow	MA-	Clock-	CS (chip select)			
5	-	Purple		Sin+ / A+				
6	-	Grey		Cos+ / B+				
7	Brown	Brown		+Vin supply				
8	Grey	Orange		+Vin sense				
9	-	-	-	-	-			
10	-	Black		Sin– / A–				
11	-	Pink		Cos-/B-				
12	-	-	-	-	-			
13	Blue	Blue	SLO+	Data+	MISO (data)			
14	Red	Red	SLO-	Data-	-			
15	Pink	Transparent		0 V (GND) sense				

A **RENISHAW** associate company

9 pin D type plug

Pin	Wire colour	BiSS	SSI	SPI		
Case	Outer shield	Encoder/machine case (Earth connection)				
1		I	nner shield			
2	Green	MA+	Clock+	Clock		
3	Yellow	MA-	Clock-	CS (chip select)		
4	Grey		+Vin sense			
5	Brown		+Vin supply			
6	Blue	SLO+	DATA +	MISO		
7	Red	SLO-	DATA –	-		
8	Pink		0 V (GND) sense			
9	White		0 V (GND) supply			

Siemens 6FX2003-0SA17

Pin	Wire colour	SSI + analog sinusodial
1	Brown	+Vin supply
2	-	-
3	-	-
4	White	0 V (GND) supply
5	-	-
6	-	-
7	-	-
8	Green	Clock+
9	Yellow	Clock-
10	-	-
11	Outer shield	Encoder/machine case (Earth connection)
12	Grey	B (Cos+)
13	Pink	B* (Cos–)
14	Blue	Data+
15	Purple	A (Sin+)
16	Black	A* (Sin–)
17	Red	Data-

Pin	Wire colour	BiSS	SSI			
Case	Outer shield	Encoder/machine case (Earth connection)	Encoder/machine case (Earth connection)			
1	White	0 V (GND) supply	0 V (GND) supply			
2	Brown	+Vin supply	+Vin supply			
3	Blue	SLO+	Data+			
4	Red	SLO-	Data –			
5	-	-	-			
6	Yellow	MA-	Clock –			
7	Green	MA+	Clock+			
8	-	-	-			

Phoenix contact M12 8 pole

NOTE: If controller does not support voltage sense functionality, we recommend connecting sense lines parallel to power supply lines in order to decrease voltage drop over cable. If sense lines are not used and/or connected, they should be isolated in order to prevent possible shorts between power supply lines.

10

Communication interfaces

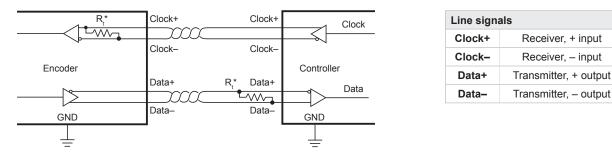
SSI								
	Maximum clock frequency	0.8 MHz standard 2.5 MHz with Delay First Clock option on the controller						
	Read repetition rate	15 kHz 30 kHz with Delay First Clock option on the controller						
	Resolution	See table below						
	Refresh rate*	100 kHz						
	Timeout (monoflop time)	10 µs						
BiSS								
	Maximum clock frequency	3.5 MHz or 5 MHz						
	Read repetition rate	30 kHz						
	Resolution	See table below						
	Latency	5 µs						
	Timeout (monoflop time)	20 µs						
SPI sla	ve							
	Maximum clock frequency	4 MHz						
	Read repetition rate	90 kHz						
	Resolution	See table below						
	Refresh rate*	100 kHz						
	Timeout (monoflop time)	10 µs						

 * The position is captured internally every 10 μs (for SSI and SPI only).

Available resolutions

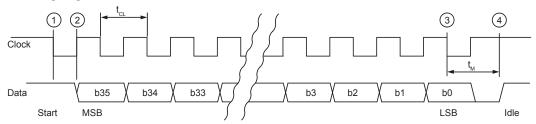
Resolution
13B - 2/2 ¹³ mm (0.244140625 µm)
12B - 2/2 ¹² mm (0.48828125 µm)
11B - 2/2 ¹¹ mm (0.9765625 μm)
2D0 - 2/2000 mm (1 µm)
10B - 2/2 ¹⁰ mm (1.953125 µm)
09B - 2/2 ⁹ mm (3.90625 μm)
08B - 2/2 ⁸ mm (7.812 µm)
07B - 2/2 ⁷ mm (15.625 μm)
06B - 2/2 ⁶ mm (31.25 µm)
05B - 2/2⁵ mm (62.5 μm)
04B - 2/2 ⁴ mm (125 μm)

LA11 always reports the position data in 26 bit binary format. Table below shows the bit values in position data for different resolutions:


Bits reported position in LA11 output message											Weight of "last active" bit (µm)																	
Resolution	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	сов (рш)	active bit (µm)
13B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0.244140625	0.244140625
12B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0.244140625	0.48828125
11B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0.244140625	0.9765625
2D0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0.250	1
10B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0.244140625	1.953125
9B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0.244140625	3.90625
8B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0.244140625	7.8125
7B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0.244140625	15.625
6B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0	0.244140625	31.25
5B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0	0	0.244140625	62.5
4B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0	0	0	0.244140625	125

Position data on serial interfaces has fixed length of 26 bits. If selected resolution is less than 13 bits, then unused lower bits are set to 0.

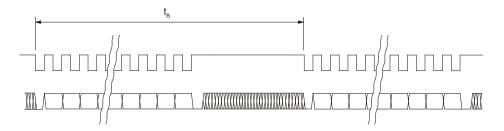
SSI - Synchronous serial interface


The encoder position, in up to 26 bit natural binary code, and the encoder status are available through the SSI protocol. The position is captured internally every 10 µs (refresh rate 100 kHz). Output position data is the last captured data before position request trigger. Request trigger is a falling edge of clock signal. The position data is left aligned, MSB first. After the position data there are two general status bits (active status low) followed by the detailed status information.

Electrical connection

* The Clock and Data lines are 5 V RS422 compatible differential pairs. The termination resistor on the Clock line is integrated inside the encoder. If the total cable length is longer than 5 m, termination on the end of the Data line at the controller end is required. The nominal impedance of cable is 120 Ω.

SSI timing diagram



The controller interrogates the readhead for its position and status data by sending a pulse train to the Clock input. The Clock signal always starts from high. The first falling edge ① latches the last position data available and on the first rising edge ② the most significant bit (MSB) of the position is transmitted to the Data output. The Data output should then be latched on the following falling edge. On subsequent rising edges of the Clock signal the next bits are transmitted. If time between ① and ② is extended for additional 1 µs then maximum clock frequency limit is 2.5 MHz instead of 0.8 MHz. This function is called "Delay First Clock" and must be supported by the controller the encoder is connected to.

After the transmission of the last bit ③ the Data output goes to low. When the t_M time expires, the Data output is logical "H" ④. The Clock signal must remain high for at least t_M before the next reading can take place.

While reading the data, the period t_{cL} must always be less than t_{M} . However, reading the encoder position can be terminated at any time by setting the Clock signal to high for the duration of t_{M} .

Maximum reading rate is defined by time t_s. If the reading request arrives earlier than t_s, the encoder position will not be updated.

12

Communication parameters

Parameter	Symbol	Min	Тур	Мах
Clock period	t _{c∟}	1.25 µs (400 ns*)		10 µs
Clock frequency	f _{c∟}	100 kHz		0.8 MHz (2.5 MHz*)
Monoflop time	t _M	10 µs		
Update time	t _B	65 μs (34.4 μs*)		

* With *Delay First Clock* function on the controller.

Туре	Value 0	Value 1	Possible reason for failure
Error	Position data is invalid.	ОК	 Error bit is active low. If low, the position is not valid. Possible reasons: The readhead is out of alignment with the magnetic scale. The magnetic scale is demagnetised. Incorrect orientation of readhead and magnetic scale. Distance between the readhead and the magnetic scale is too large. Speed of movement too high.
Warning	Position data is valid.	ОК	Warning bit is active low. If low, the encoder operation is close to its limits (> 80% of maximum temperature). The position is still valid.

SSI - position with two general and detailed status bits

Structure of data packet

Bit	b35 : b10	b9 : b8	b7 : b0
Data length	26 bits	2 bits	8 bits
Meaning	Encoder position	General status	Detailed status

Encoder position

b35 : b10	Encoder position, left aligned, MSB first. Unused lower bits are set to 0.
	LSB bit = 2000 µm / 2 ¹³

General status

b9 Error. If bit is "L", position is not va	id.
---	-----

b8 Warning. If bit is "L", encoder is near operational limits. Position is valid.

Error and Warning bits can be set at the same time; in this case Error bit has priority.

The color of the LED on the readhead housing indicates the value of the General status bits:

Red = Error, Orange = Warning, Green = Normal operation. Red or Orange or Green indicator flashing = no communication running between controller and encoder. No light = no power supply or general failure. The warning or error status is more closely defined by the Detailed status bits.

Detailed status

b7	Not used - always 0.
b6	Error - The distance between the readhead and the magnetic scale is too large.
b5	Error - Signal lost. The readhead is out of alignment with the magnetic scale or the magnetic scale is demagnetised. Incorrect orientation of readhead and magnetic scale.
b4	Warning - Temperature. The readhead temperature is close to operational limits [> 80% of maximum temperature].
b3	Not used - always 0.
b2	Not used - always 0.
b1	Not used - always 0.
b0	Error - Frequency. Speed of movement too high.

SSI - position with two general status bits

Data packet is 28 bits long, MSB first, left aligned. It provides position and two general error warning status bits. All resolutions are available.

Structure of data packet

Bit	b27 : b2	b1 : b0
Data length	26 bits	2 bits
Meaning	Encoder position	General status

Encoder position	ncoder position				
b27 : b2	Encoder position, left aligned, MSB first. Unused lower bits are set to 0. LSB bit = 2000 μm / $2^{\rm 13}$				
General status					
b1	Error. If bit is "L", position is not valid.				
b0	b0 Warning. If bit is "L", encoder is near operational limits. Position is valid.				
The color <mark>Red</mark> = Err	Warning bits can be set at the same time; in this case Error bit has priority. of the LED on the readhead housing indicates the value of the General status bits: or, Orange = Warning, Green = Normal operation. Red or Orange or Green indicator flashing = no cation running between controller and encoder. No light = no power supply or general failure.				

SSI - position only mode

Data packet is 26 bits long, MSB first, left aligned. It provides position only without status bits. All resolutions are available.

Structure of data packet

Bit	b25 : b0	
Data length	26 bits	
Meaning	Encoder position	

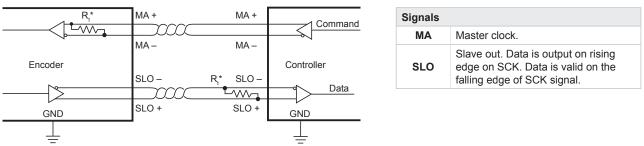
Encoder position

b25 : b0	Encoder position, left aligned, MSB first. Unused lower bits are set to 0.
	LSB bit = 2000 μ m / 2 ¹³

SSI output »position only« with 1 μm resolution has 24 bit long position data word.

SSI - position only in Gray code

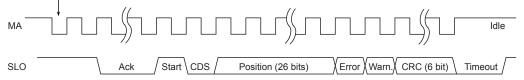
This mode provides position only in the reflected binary code, also known as Gray code.



BiSS-C interface

The encoder position, in up to 26 bit natural binary code, and the encoder status are available through the BiSS-C protocol. The position data is left aligned, MSB first. After the position data there are two status bits (active low) followed by CRC (inverted).

BiSS is implemented for point-to-point operation; multiple slaves are not supported. Repetition of reading is maximum 30,000 times per second. If higher, the same position data will be reported. Note that 30 kHz is not achievable for all MA clock frequencies (because data transmission takes too long).


Electrical connection

*The MA and SLO lines are 5 V RS422 compatible differential pairs. The termination resistor on the MA line is integrated inside the readhead. If the total cable length is longer than 5 m, termination on the end of the SLO line at the controller side is recommended end is required. The nominal impedance of the cable is 120 Ω .

BiSS-C timing diagram

Encoder latches position value 500 ns after first falling edge

Encoder responds to the controller commands by saving the position value 500 ns after the falling edge of the MA signal. MA is idle high. Communication is initiated with first falling edge.

The encoder responds by setting SLO low on the second rising edge on MA.

Ack is the period during which the readhead calculates the absolute position and it is described in ordering code on page 18. When the encoder is ready for the next request cycle it indicates this to the master by setting SLO high.

The CRC is in binary format and sent MSB first. The absolute position is in binary format and sent MSB first, left aligned, unused lower bits are set to zero. CDS bit is always zero.

Communication parameters

Parameter	Min	Тур	Max	Description
Clock frequency	50 kHz	-	A/B*	Master clock frequency
Timeout	-	-	20 µs	Communication timeout

*Please see ordering code on page 18.

Status bits

Туре	Value 0	Value 1	Possible reason for failure
Error	Position data is invalid.	ОК	 Error bit is active low. If low, the position is not valid. Possible reasons: The readhead is out of alignment with the magnetic scale. The magnetic scale is demagnetised. Incorrect orientation of readhead and magnetic scale. Distance between the readhead and the magnetic scale is too large. Speed of movement too high.
Warning	Position data is valid.	ОК	Warning bit is active low. If low, the encoder operation is close to its limits (> 80% of maximum temperature). The position is still valid.

Data packet description

Position data on serial interfaces has fixed length of 26 bits. If selected resolution is less than 13 bits, then unused lower bits are set to 0. See chapter "Available resolutions" on page 9.

Polynomial for CRC calculation of position, error and warning data is: $x^6 + x^1 + 1$. Represented also as 0x43. The start bit and CDS bit are omitted from the CRC calculation. It is inverted and transmitted MSB first.

Example of calculation routine for 6-bit CRC can be found in Appendix 2 of this document.

For more information regarding BiSS protocol see www.biss-interface.com.

A RENISHAW & associate company

SPI - Serial peripheral interface (slave mode)

The SPI interface is designed for communication with nearby devices. The position is internaly captured every 10 µs (refresh rate 100 kHz). Output position data is the last valid captured data before position request trigger. Request trigger is a high to low transition of the CS signal.

Electrical connection

Possible data signals are 3.3 V LVTTL or 5 V TTL (see part numbering).

Signal	Description
CS	Active low. \overline{CS} line is used for synchronisation between master and slave devices. During communication it must be held low. Idle is high. Rising edge on \overline{CS} signal resets the SPI interface.
SCK	Clocks out the data on rising edge. Max frequency 4 MHz.
MISO	Data is output on rising edge on SCK after \overline{CS} low. Data is valid on the falling edge of SCK signal. During \overline{CS} =1 MISO line is in high-Z mode.

Communication parameters

Parameter		Symbol	Min	Тур	Max	Note
Clock frequency		f _{clk}	1 Hz		4 MHz	
Time after $\overline{\text{CS}}$ low to	S low to first CLK rising edge t _s		1 µs			
Time after last CLK f	Time after last CLK falling edge to $\overline{\text{CS}}$ high		1 µs			
CS high time	CS high time		1 µs			Time to complete SPI reset
Read repetition	Simple mode	£			90 kHz	
rate*	Advance mode	I _{REP}			60 kHz	

*Note that maximum read repetition rate is not achievable for all clock frequencies (because data transmission takes too long).

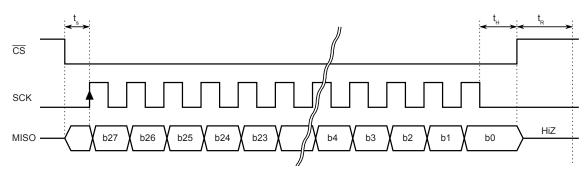
Communication interface variant in the part numbering defines the SPI interface type and all dependent parameters.

Communication interface variant (part numbering)	Description	Parameter	Value
		Resolution	Selectable (see part numbering)
SP (variant A)	SPI slave - simple mode	Status	All status bits are available through the SPI
		Data length	28 bit data packet - position, status
		Resolution	Selectable (see part numbering)
SP (variant B)	SPI slave - advanced mode	Status	All status bits are available through the SPI
		Data length	44 bit data packet - position, status, detailed status, CRC

Status bits:

Туре	Value 0	Value 1	Possible reason for failure
Error	Position data is invalid.	ОК	 Error bit is active low. If low, the position is not valid. Possible reasons: The readhead is out of alignment with the magnetic scale. The magnetic scale is demagnetised. Incorrect orientation of readhead and magnetic scale. Distance between the readhead and the magnetic scale is too large. Speed of movement too high.
Warning	Position data is valid.	OK	Warning bit is active low. If low, the encoder operation is close to its limits (> 80% of maximum temperature). The position is still valid.

SPI slave - simple mode (variant A)


Structure of data packet

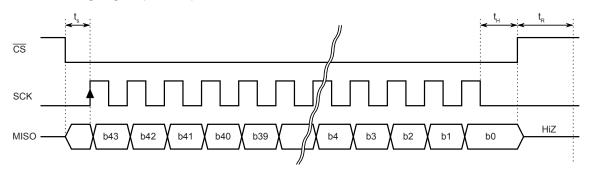
Position is 26 bits long - MSB first, left aligned. After the position data there are two general status bits (active "L"). Repetition of reading is maximum 90,000 times per second.

Bit	b27 : b2	b1 : b0
Data length	26 bits	2 bits
Meaning	Encoder position	General status

Encode	er position					
	b27 : b2	Encoder position, left aligned, MSB first. Unused lower bits are set to 0. LSB bit = 2000 μm / 2^{13}				
Genera	I status					
	b1	Error. If bit is "L", position is not valid.				
	b0	Warning. If bit is "L", encoder is near operational limits. Position is valid.				
	Error and Warning bits can be set at the same time; in this case Error bit has priority. The color of the LED on the readhead housing indicates the value of the General status bits: Red = Error, Orange = Warning, Green = Normal operation. Red or Orange or Green indicator flashing = no communication running between controller and encoder. No light = no power supply or general failure.					

SPI slave timing diagram (variant A)

SPI slave - advanced mode (variant B)

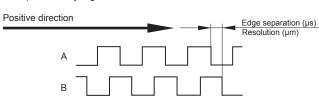

Structure of data packet

Data packet is 44 bits long. In every particulary word (position, CRC) MSB is first. Repetition of reading is maximum 60,000 times per second. Note that 60 kHz is not achievable for all clock frequencies (because data transmission takes too long).

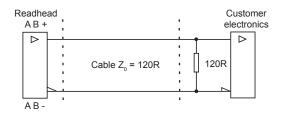
Bit	b43 : b18	b17 : b16	b15 : b8	b7 : b0
Data length	26 bits	2 bits	8 bits	8 bits
Meaning	Encoder position	General status	Detailed status	CRC

Encode	r position	
	b43 : b18	Encoder position, left aligned, MSB first. Unused lower bits are set to 0. LSB bit = 2000 μ m / 2 ¹³
Genera	l status	
	b17	Error. If bit is "L", position is not valid.
	b16	Warning. If bit is "L", encoder is near operational limits. Position is valid.
	The color on Red = Erro	Warning bits can be set at the same time; in this case Error bit has priority. of the LED on the readhead housing indicates the value of the General status bits: or, Orange = Warning, Green = Normal operation. Red or Orange or Green indicator flashing = no communication tween controller and encoder. The warning or error status is more closely defined by the Detailed status bits.
Detailed	d status	
	b15	Not used.
	b14	Error - The distance between the readhead and the magnetic scale is too large.
	b13	Error - Signal lost. The readhead is out of alignment with the magnetic scale or the magnetic scale is demagnetised. Incorrect orientation of readhead and magnetic scale.
	b12	Warning - Temperature. The readhead temperature is close to operational limits (>80 % of maximum temperature).
	b11	Not used - always 0.
	b10	Not used - always 0.
	b9	Not used - always 0.
	b8	Error - Frequency. Speed of movement too high.
CRC		
	b7 : b0	CRC check with polynomial 0x97

SPI slave timing diagram (variant B)


Incremental output signals, RS422

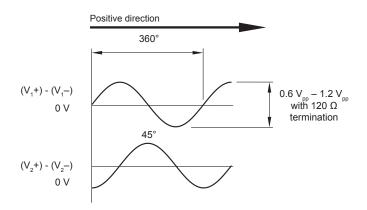
Square wave differential line driver to EIA RS422


Output signals	2 square-wave signals A, B and their inverted signals A –, B –
Signal level	Differential line driver to EIA standard RS422: $U_H \ge 2 V \text{ at} - I_H = 50 \text{ mA}$ $U_L \le 0.5 V \text{ at} I_L = 50 \text{ mA}$
Permissible load	$\label{eq:loss} \begin{array}{l} Z_{0} \geq 100 \; \Omega \mbox{ between associated outputs} \\ I_{L} \leq 50 \; mA \; max. \mbox{ load per output} \\ \mbox{ Capacitive load} \leq 1000 \; pF \\ \mbox{ Outputs are protected against short circuit} \\ to 0 \; V \; and \; to +5 \; V \end{array}$

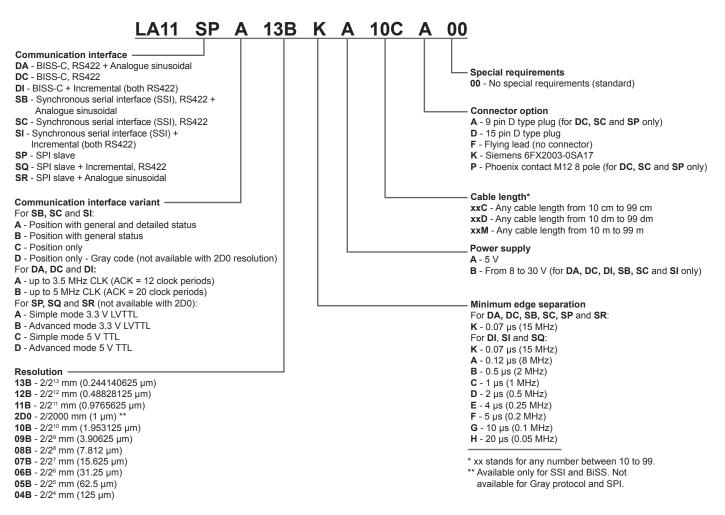
Timing diagram

Complementary signals not shown

Recommended signal termination

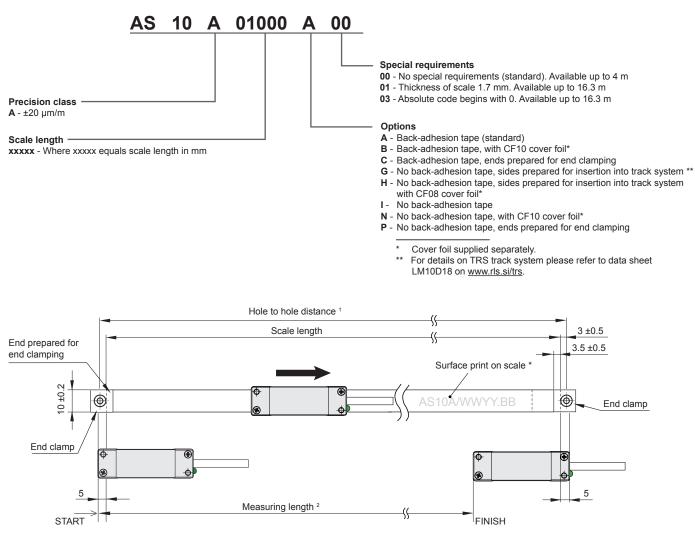


Analogue sinusoidal output signals (1 $\rm V_{\rm pp})$


The sinusoidal incremental signals A and B are phase-shifted by 90° elec. and have an amplitude of typically 1 V_{pp} .

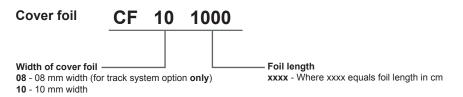
Output signals	V ₁ , V ₂	
Sin/cos signals	Amplitude (with 120 Ω termination)	0.6 $V_{_{pp}}$ to 1.2 $V_{_{pp}}$
Termination	$Z_0 = 120 \Omega$ between asso	ciated outputs

Timing diagram



Part numbering

Series	Communication interface	Communication interface variant	Resolution	Minimum edge separation	Power supply	Cable length	Connector options	Special requirements
	DA			К			D/F/K	
	DC	A/B	13B / 12B	ĸ			A/D/F/K/P	
	DI		/ 11B / 2D0 / 10B / 9B /	K/A/B/C/D/ E/F/G/H	A/B	xxC / xxD / xxM	D/F/K	00
	SB		08B / 07B / 06B / 05B /	к	A/B			
LA11	SC		00B703B7 04B				A/D/F/K/P	
	SI			K/A/B/C/D/ E/F/G/H			D/F/K	
	SP	A/B/C/D	13B / 12B	К			A/D/F/K/P	
	SQ		/ 11B / 10B / 9B / 08B / 07B / 06B /	K/A/B/C/D/ E/F/G/H	A		D/F/K	
	SR		05B / 04B	к				


AS10 magnetic scale part numbering

 1 Hole to hole distance (for end clamp mounting) = Scale length + (6 mm ± 1 mm) 2 Measuring length = Scale length - 42 mm

* Scale surface print does not represent the actual ordering code. For orientation purpose only.

Accessories part numbering

A **RENISHAW** associate company

Accessories part numbering

End clamp kit (2 clamps + 2 screws)

LM10ECL00

USB encoder interface

E201-9S or E201-9Q

For details on E201 interfaces please refer to data sheet E201 on www.rls.si/e201.

Applicator tool for magnetic scale
LMA10ASC00

Magnet viewer

Appendix 1 - 6-bit CRC calculation with 0x43 polynome for BiSS

BiSS communication offers a CRC value to check the correctness of the data read from the encoder. This chapter gives an example of the CRC calculation on the receiver side. The CRC calculation must always be done over the complete set of data. The polynomial for the CRC calculation is $P(x) = x^6 + x^1 + 1$, also represented as 0x43.

Code example: u8 tableCRC6[64] = { 0x00, 0x03, 0x06, 0x05, 0x0C, 0x0F, 0x0A, 0x09, 0x18, 0x1B, 0x1E, 0x1D, 0x14, 0x17, 0x12, 0x11, 0x30, 0x33, 0x36, 0x35, 0x3C, 0x3F, 0x3A, 0x39, 0x28, 0x2B, 0x2E, 0x2D, 0x24, 0x27, 0x22, 0x21, 0x23, 0x20, 0x25, 0x26, 0x2F, 0x2C, 0x29, 0x2A, 0x3B, 0x38, 0x3D, 0x3E, 0x37, 0x34, 0x31, 0x32, 0x13, 0x10, 0x15, 0x16, 0x1F, 0x1C, 0x19, 0x1A, 0x0B, 0x08, 0x0D, 0x0E, 0x07, 0x04, 0x01, 0x02}; u8 crcBiSS(u32 bb) { u8 crc; t = (bb >> 30) & 0x00000003; crc = ((bb >> 24) & 0x000003F); t = crc ^ tableCRC6[t]; crc = ((bb >> 18) & 0x000003F); t = crc ^ tableCRC6[t]; crc = ((bb >> 12) & 0x000003F); t = crc ^ tableCRC6[t]; crc = ((bb >> 6) & 0x000003F); t = crc ^ tableCRC6[t]; crc = (bb & 0x000003F); t = crc ^ tableCRC6[t]; crc = tableCRC6[t]; return crc; }

Recommended literature:

- Painless guide to CRC error detection algorithm; Ross N. Williams.

- Cyclic Redundancy Code (CRC) Polynomial Selection For Embedded Networks; P. Koopman, T. Chakravarty

Appendix 2 - 8-bit CRC calculation with 0x97 polynome

Some of the communication interfaces offer a CRC value to check the correctness of the data read from the encoder. This chapter gives an example of the CRC calculation on the receiver side. The CRC calculation must always be done over the complete set of data including all the reserved bits. The polynomial for the CRC calculation is $P(x) = x^8 + x^7 + x^4 + x^2 + x^1 + 1$, also represented as 0x97.

Code example:

//poly = 0x97
static u8 tableCRC [256] = {

0x00, 0x97, 0xB9, 0x2E, 0xE5, 0x72, 0x5C, 0xCB, 0x5D, 0xCA, 0xE4, 0x73, 0xB8, 0x2F, 0x01, 0x96, 0xBA, 0x2D, 0x03, 0x94, 0x5F, 0xC8, 0xE6, 0x71, 0xE7, 0x70, 0x5E, 0xC9, 0x02, 0x95, 0xBB, 0x2C, 0xE3, 0x74, 0x5A, 0xCD, 0x06, 0x91, 0xBF, 0x28, 0xBE, 0x29, 0x07, 0x90, 0x5B, 0xCC, 0xE2, 0x75, 0x59, 0xCE, 0xE0, 0x77, 0xBC, 0x2B, 0x05, 0x92, 0x04, 0x93, 0xBD, 0x2A, 0xE1, 0x76, 0x58, 0xCF, 0x51, 0xC6, 0xE8, 0x7F, 0xB4, 0x23, 0x0D, 0x9A, 0x0C, 0x9B, 0xB5, 0x22, 0xE9, 0x7E, 0x50, 0xC7, 0xEB, 0x7C, 0x52, 0xC5, 0x0E, 0x99, 0xB7, 0x20, 0xB6, 0x21, 0x0F, 0x98, 0x53, 0xC4, 0xEA, 0x7D, 0xB2, 0x25, 0x0B, 0x9C, 0x57, 0xC0, 0xEE, 0x79, 0xEF, 0x78, 0x56, 0xC1, 0x0A, 0x9D, 0xB3, 0x24, 0x08, 0x9F, 0xB1, 0x26, 0xED, 0x7A, 0x54, 0xC3, 0x55, 0xC2, 0xEC, 0x7B, 0xB0, 0x27, 0x09, 0x9E, 0xA2, 0x35, 0x1B, 0x8C, 0x47, 0xD0, 0xFE, 0x69, 0xFF, 0x68, 0x46, 0xD1, 0x1A, 0x8D, 0xA3, 0x34, 0x18, 0x8F, 0xA1, 0x36, 0xFD, 0x6A, 0x44, 0xD3, 0x45, 0xD2, 0xFC, 0x6B, 0xA0, 0x37, 0x19, 0x8E, 0x41, 0xD6, 0xF8, 0x6F, 0xA4, 0x33, 0x1D, 0x8A, 0x1C, 0x8B, 0xA5, 0x32, 0xF9, 0x6E, 0x40, 0xD7, 0xFB, 0x6C, 0x42, 0xD5, 0x1E, 0x89, 0xA7, 0x30, 0xA6, 0x31, 0x1F, 0x88, 0x43, 0xD4, 0xFA, 0x6D, 0xF3, 0x64, 0x4A, 0xDD, 0x16, 0x81, 0xAF, 0x38, 0xAE, 0x39, 0x17, 0x80, 0x4B, 0xDC, 0xF2, 0x65, 0x49, 0xDE, 0xF0, 0x67, 0xAC, 0x3B, 0x15, 0x82, 0x14, 0x83, 0xAD, 0x3A, 0xF1, 0x66, 0x48, 0xDF, 0x10, 0x87, 0xA9, 0x3E, 0xF5, 0x62, 0x4C, 0xDB, 0x4D, 0xDA, 0xF4, 0x63, 0xA8, 0x3F, 0x11, 0x86, 0xAA, 0x3D, 0x13, 0x84, 0x4F, 0xD8, 0xF6, 0x61, 0xF7, 0x60, 0x4E, 0xD9, 0x12, 0x85, 0xAB, 0x3C}; // use this function to calculate CRC from 32-bit number

```
0 0 45( 00 11)
```

```
u8 crc8_4B(u32 bb)
{
    u8 crc;
    t = (bb >> 24) & 0x000000FF;
    crc = ((bb >> 16) & 0x000000FF);
    t = crc ^ tableCRC[t];
    crc = ((bb >> 8) & 0x000000FF);
    t = crc ^ tableCRC[t];
    crc = (bb & 0x000000FF);
    t = crc ^ tableCRC[t];
    crc = tableCRC[t];
    rcr = tableCRC[t];
    rcr = tableCRC[t];
    return crc;
```

 $\ensuremath{\textit{//}}\xspace$ use this function to calculate CRC from fixed length buffer example:

u8 Buffer[BufferLength];

}

crc_value = u8 CRC_Buffer(BufferLength);

u8 CRC_Buffer(u8 NumOfBytes) // parameter = how many bytes from buffer to use to calculate CRC

```
NumOfBytes -= 1;
icrc = 1;
t = Buffer[0];
while (NumOfBytes--)
{
t = Buffer[icrc++] ^ tableCRC[t];
}
crc = tableCRC[t];
return crc;
}
```

Recommended literature:

- Painless guide to CRC error detection algorithm; Ross N. Williams.

- Cyclic Redundancy Code (CRC) Polynomial Selection For Embedded Networks; P. Koopman, T. Chakravarty

Head office

RLS merilna tehnika d.o.o. Poslovna cona Žeje pri Komendi

Pod vrbami 2 SI-1218 Komenda Slovenia

T +386 1 5272100 F +386 1 5272129 E mail@rls.si www.rls.si

Document issues

Issue	Date	Page	Corrections made
1	25. 1. 2016	-	New document
2	3. 3. 2016	7	Phoenix contact M12 8 pole title amended
		17	Power supply description B amended
3	8. 4. 2016	3	Ride height table amended
4	16. 6. 2016	3, 7, 17	Ride height table amended, Lumberg connector removed, Connector option amended
5	6.7.2017	5	Diagram 2 amended
		6	Pin color description amended
		9, 13	Posiiton data description amended
		4, 12, 17	New resolution added
6	13. 12. 2017	2	Storage and handling amended
		5	Technical specifications amended
		6, 7, 8	Graphs added and amended
		9	Cable specifications amended, 15-pin amended
		11	Available resolution amended
		21	AS part numbering amended

RLS merilna tehnika d.o.o. has made considerable effort to ensure the content of this document is correct at the date of publication but makes no warranties or representations regarding the content. RLS merilna tehnika d.o.o. excludes liability, howsoever arising, for any inaccuracies in this document. © 2017 RLS d.o.o.