

LA11 absolute magnetic encoder system

LA11 is an absolute magnetic linear encoder system designed for motion control applications as a position and velocity control loop element.

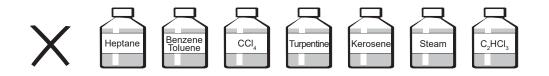
The encoder system is highly reliable due to contactless absolute measuring principle, built-in safety algorithms and high quality materials/components used.

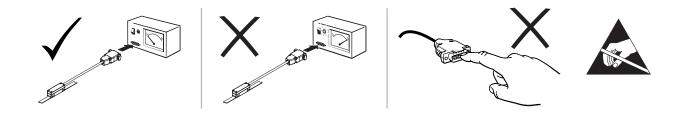
The measuring standard is a magnetic scale which consists of a stainless steel substrate with an elasto-ferrite layer. The elasto-ferrite layer is magnetised with two tracks. The incremental track is magnetised with 2 mm long (alternating south and north) poles and the absolute track

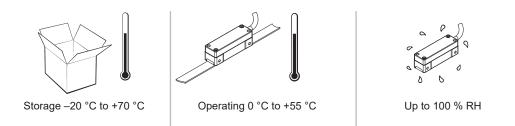
is magnetised with a pseudo random binary sequence (PRBS) absolute code with 13 bit length.

The elasto-ferrite layer is immune to chemicals commonly found in industrial environment.

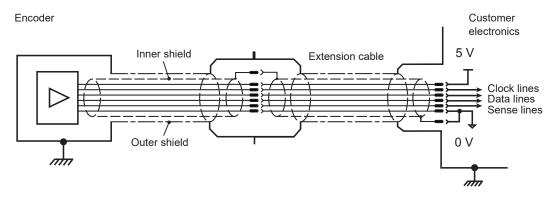

The readhead includes Hall sensor arrays for PRBS track reading, an AMR sensor for incremental track reading, interpolation electronics and custom logic circuitry. The data from the Hall arrays and interpolator are processed in the internal MCU using special algorithms to determine the absolute position.

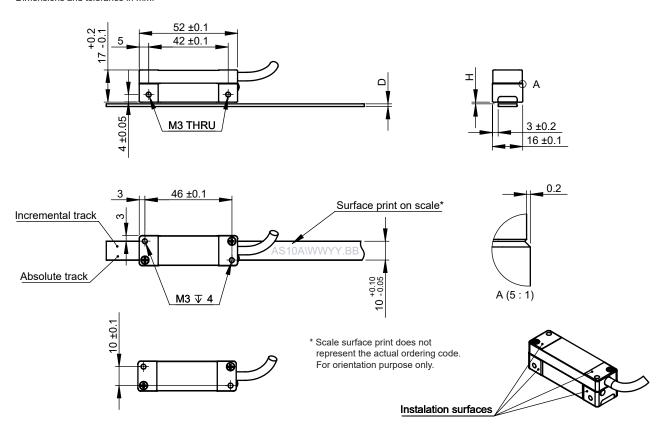

The electronics design provides short response and recovery times.


Diagnostic information is available through a serial communication channel and status LED.


- True absolute system
- Suitable for highly dynamic control loops
- High accuracy
- Resolutions up to 0.244 μm
- Axis lengths up to 16.3 m
- Speeds up to 7 m/s at 0.976 μm resolution
- SSI, SPI, BiSS communication protocols and parallel outputs
- Robust design and IP68 protection class

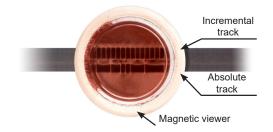
Storage and handling

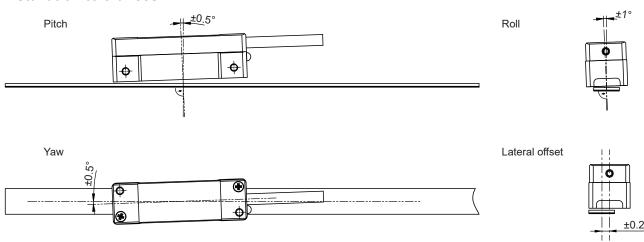




Shield connection

Dimensions


Dimensions and tolerance in mm.


General tolerances: ISO 2768 m K	Magnetic scale thickness (D)	Ride height (H)
With back-adhesion tape	1.5 ± 0.15	0.1–0.6
With back-adhesion tape, with cover foil	1.6 ± 0.15	0.1–0.5
No back-adhesion tape	1.3 ± 0.15	0.1–0.6
No back-adhesion tape, with cover foil	1.4 ± 0.15	0.1–0.5
No back-adhesion tape, sides prepared for track system	1.3 ± 0.15	0.1–0.4
No back-adhesion tape, sides prepared for track system, with cover foil	1.4 ± 0.15	0.1–0.3

Readhead orientation

Orientation of the readhead relative to AS10 magnetic scale should be according to the dimensions drawing on page 3. For reference use the surface print on AS scale or magnet viewer (see image on the right).

Installation tolerances

Status LEDs

LED	Communication	Status
Green	Yes	Valid position data
Green flashing	No	Valid position data
Orange	Yes	Valid position data, >80 % of max. temperature
Orange flashing	No	Valid position data, >80 % of max. temperature
Red	Yes	Invalid position data
Red flashing	No	Invalid position data

By special request the status LEDs can be turned off. Please contact sales@rls.si.

For readheads with BiSS communication interface:

When there is no communication between controller and encoder the alarm status on LED is not updated, with the exception of temperature alarm. LED shows the alarm status of the last communication request.

Technical specifications

System data			
Maximum length for AS scale	16.3 m		
Incremental pole length	2 mm		
Maximum speed for parallel incremental signals			

Ordering code	Resolution (µm)	Interpolation factor		Maximum speed (m/s)							
13B	~0.244	8,192	1.82	0.91	0.23	0.11	0.06	0.03	0.02	0.01	0.01
12B	~0.488	4,096	3.65	1.82	0.46	0.23	0.12	0.06	0.05	0.02	0.01
11B	~0.976	2,048	7	3.65	0.91	0.46	0.24	0.12	0.10	0.05	0.02
2D0	1	2,000	7	3.73	0.93	0.47	0.24	0.12	0.10	0.05	0.02
10B	~1.953	1,024	7	7	1.82	0.91	0.48	0.24	0.19	0.10	0.05
09B	~3.906	512	7	7	3.65	1.82	0.95	0.49	0.38	0.19	0.10
08B	~7.812	256	7	7	7	3.65	1.90	0.97	0.77	0.39	0.19
07B	15.625	128	7	7	7	7	3.81	1.94	1.53	0.77	0.39
06B	31.25	64	7	7	7	7	7	3.89	3.07	1.55	0.78
05B	62.5	32	7	7	7	7	7	7	6.14	3.10	1.56
04B	125	16	7	7	7	7	7	7	7	6.19	3.11
	Edge	separation (µs)	0.07	0.12	0.50	1	2	4	5	10	20
Ma	aximum count f	requency (MHz)	15	8	2	1	0.50	0.25	0.20	0.10	0.05
		Ordering code	K	Α	В	С	D	E	F	G	Н

System accuracy	±40 μm/m			
Short range accuracy	<±10 μm/10 mm (see diagram 9)			
Coefficient of thermal expansion (CTE)	17 ± 1 μm/(m K)			
Repeatability	Unit of resolution			
Hysteresis	<2 µm at 0.1 mm ride height (see diagram 1)			
Electrical data				
Power supply	Option A: From 4.75 V to 5.75 V - Voltage on readhead, consider voltage drop over cable (see diagrams 3, 4, 5, 6) Option B: From 8 V to 30 V (see diagram 7)			
Reverse polarity protection	For option A only			
Set-up time after switch-on	<350 ms			
Power consumption (without load)	Option A: < 150 mA at 5 V power supply Option B: see diagram 7			
Voltage drop over cable	-80 mV/m (without load)			
Mechanical data				
Mass	Readhead (with 1 m cable, no connector) 41 g, magnetic scale 60 g/m			
Environmental data				
Temperature	Operating 0 °C to +55 °C			
	Storage –20 °C to +70 °C			
Vibrations (55 Hz to 2000 Hz)	300 m/s² (IEC 60068-2-6)			
Shocks (11 ms)	300 m/s² (IEC 60068-2-27)			
Humidity	100 % (condensation permitted)			
EMC Immunity	IEC 61000-6-2 (particularly: ESD: IEC 61000-4-2; EM fields: IEC 61000-4-3; Burst: IEC 61000-4-4; Surge: IEC 61000-4-5; Conducted disturbances: IEC 61000-4-6; Power frequency magnetic fields: IEC 61000-4-8; Pulse magnetic fields: IEC 61000-4-9)			
EMC Emission	IEC 61000-6-4 (for industrial, scientific and medical equipment: IEC 55011)			
Environmental sealing	Readhead only: IP68 (according to IEC 60529)			

Data sheet **LA11D01_10**

Diagram 1: Hysteresis vs. ride height

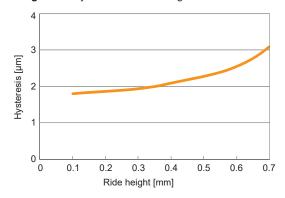
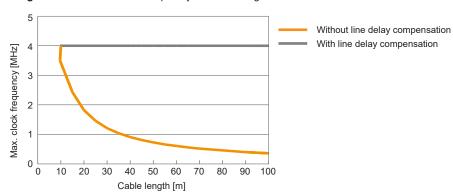
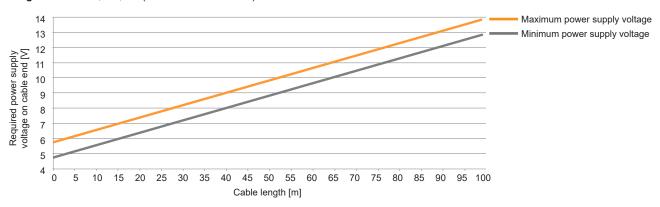
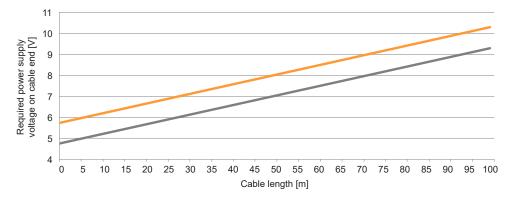




Diagram 2: Maximum clock frequency vs. cable length



Required power supply voltage on cable end vs. overall cable length

Diagram 3: for DC, SC, SP (with 150 Ω termination)

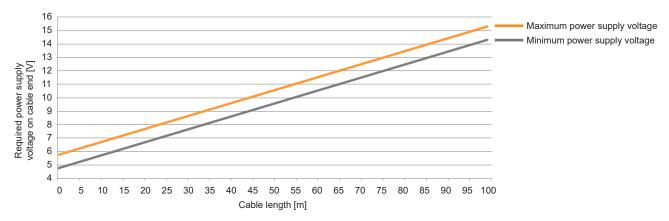


Diagram 4: for DC, SC, SP (with 150 Ω termination) with sense lines connected parallel to power supply lines

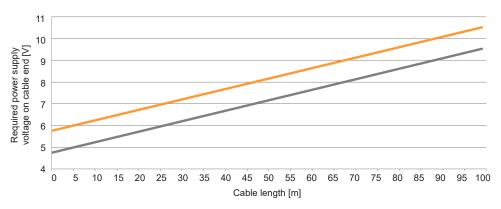


Diagram 5: for DA, DI, SB, SI, SQ, SR (with 150 Ω termination)

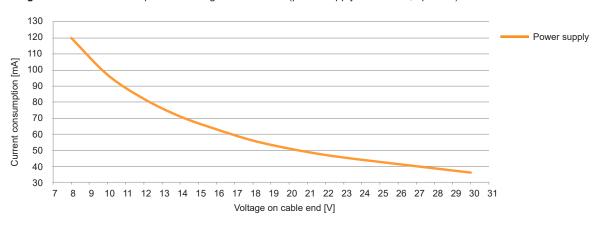


Diagram 6: for DA, DI, SB, SI, SQ, SR (with 150 Ω termination) with sense lines connected parallel to power supply lines

Current consumption vs. voltage on cable end

Diagram 7: Current consumption vs. voltage on cable end (power supply 8 V to 30 V, option B)

Data sheet LA11D01_10

Diagram 8: Short range accuracy vs. ride height-lateral offset (LO) as a parameter - typical

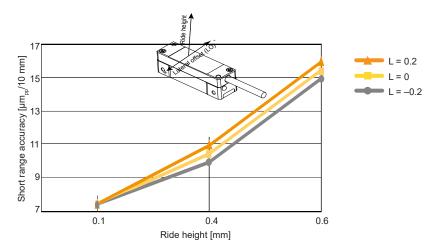
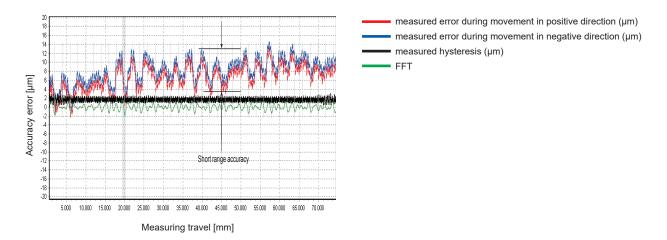
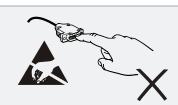



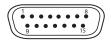
Diagram 9: Definition of short range accuracy



Electrical connections

Cable specifications

Cable type	PUR high flexible cable, drag-chain compatible, double-shielded		
Number of wires	8	12	
Communication interface	DC, SC, SP	DA, DI, SB, SI, SQ, SR	
Outer diameter	4.2 mm ±0.2 mm	4.5 mm ±0.2 mm	
Jacket material	Extruded polyurethane (PUR)		
White wire	0.14 mm², 26 AWG, 0.13 Ω/m	0.00	
Other wires	$0.05~\text{mm}^2$, $30~\text{AWG}$, $0.35~\Omega/\text{m}$	0.08 mm², 28 AWG, 0.23 Ω/m	
Durability	20 million cycles at 25 mm bend radius	20 million cycles at 50 mm bend radius	
Weight	34 g/m nominal 38 g/m nominal		
Bend (internal) radius	Dynamic 25 mm, static 10 mm	Dynamic 50 mm, static 10 mm	



WARNING!

ESD protection

Readhead is ESD sensitive - handle with care. Do not touch wires or connector pins without proper ESD protection or outside of ESD controlled environment.

15 pin D type plug

Pin	Wire colour (for SC, DC, SP)	Wire colour	BiSS	SSI	SPI	
Case	Outer shield	Outer shield	Encoder/machine case (Earth connection)	Encoder/machine case (Earth connection)	Encoder/machine case (Earth connection)	
1			Inner shield			
2	White	White		0 V (GND) supply		
3	Green	Green	MA+	Clock+	Clock	
4	Yellow	Yellow	MA-	Clock-	CS (chip select)	
5	-	Purple	Sin+/A+			
6	-	Grey		Cos+/B+		
7	Brown	Brown		+Vin supply		
8	Grey	Orange		+Vin sense		
9	-	-	-	-	-	
10	-	Black		Sin- / A-		
11	-	Pink		Cos- / B-		
12	-	-	-	-	-	
13	Blue	Blue	SLO+	Data+	MISO (data)	
14	Red	Red	SLO-	Data-	-	
15	Pink	Transparent	0 V (GND) sense			

LA11D01_10

9 pin D type plug

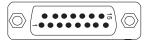
Pin	Wire colour	BiSS	SSI	SPI	
Case	Outer shield	Encoder/machine case (Earth connection)	Encoder/machine case (Earth connection)	Encoder/machine case (Earth connection)	
1		I	nner shield		
2	Green	MA+	Clock+	Clock	
3	Yellow	MA-	Clock-	CS (chip select)	
4	Grey	+Vin sense			
5	Brown		+Vin supply		
6	Blue	SLO+	DATA +	MISO	
7	Red	SLO-	DATA –	-	
8	Pink	0 V (GND) sense			
9	White	0 V (GND) supply			

Siemens 6FX2003-0SA17

Pin	Wire colour	SSI + analogue sinusodial
1	Brown	+Vin supply
2	-	-
3	-	-
4	White	0 V (GND) supply
5	-	-
6	-	-
7	-	-
8	Green	Clock+
9	Yellow	Clock-
10	-	-
11	Outer shield	Encoder/machine case (Earth connection)
12	Grey	B (Cos+)
13	Pink	B* (Cos-)
14	Blue	Data+
15	Purple	A (Sin+)
16	Black	A* (Sin-)
17	Red	Data-

NOTE: If controller does not support voltage sense functionality, we recommend connecting sense lines parallel to power supply lines in order to decrease voltage drop over cable. If sense lines are not used and/or connected, they should be isolated in order to prevent possible shorts between power supply lines.

Phoenix contact M12 8 pole


Pin	Wire colour	BiSS	SSI	SPI
Case	Outer shield	Encoder/machine case (Earth connection)	Encoder/machine case (Earth connection)	Encoder/machine case (Earth connection)
1	White	0 V (GND) supply	0 V (GND) supply	0 V (GND) supply
2	Brown	+Vin supply	+Vin supply	+Vin supply
3	Blue	SLO+	Data+	MISO
4	Red	SLO-	Data –	-
5	-	-	-	-
6	Yellow	MA-	Clock -	CS
7	Green	MA+	Clock+	CLOCK
8	-	-	-	-

Siemens SMC20

Pin	Wire colour	SSI+
Case	Outer shield	Outer shield
1	Brown	P encoder
2	White	M encoder
3	Purple	A (Sin+)
4	Black	A- (Sin-)
5	Inner shield	Ground
6	Grey	B (Cos+)
7	Pink	B- (Cos-)
8	-	-
9	-	-
10	Green	Clock
11	-	-
12	Yellow	Clock-
13	-	-
14	Orange	P Sense
15	Blue	Data
16	Transparent	M sense
17	-	-
18	-	-
19	-	-
20	-	-
21	-	-
22	-	-
23	Red	Data-
23	-	-
25	-	-

Siemens SMC30

Pin	Wire colour	SSI + analogue sinusoidal
Case	Outer shield	Outer shield
1	-	-
2	Green	Clock
3	Yellow	Clock-
4	Brown	P encoder 5 V / 24 V
5	-	-
6	Grey	P sense
7	White	M encoder
8	-	-
9	Pink	M sense
10	-	-
11	-	-
12	-	-
13	-	-
14	Red	Data-
15	Blue	Data

A **RENISHAW** associate company

LA11D01_10

Communication interfaces

SSI						
	Maximum clock frequency	0.8 MHz standard 2.5 MHz with Delay First Clock option on the controller				
	Read repetition rate	15 kHz 30 kHz with Delay First Clock option on the controller				
	Resolution	See table below				
	Refresh rate*	100 kHz 10 µs				
	Timeout (monoflop time)					
BiSS-C						
	Maximum clock frequency	2.2 MHz or 3.5 MHz				
	Read repetition rate (3.5 MHz)	27 kHz				
	Resolution	See table below				
	Latency	7.5 µs				
	Timeout (monoflop time)	20 μs				
SPI slav	e					
	Maximum clock frequency	4 MHz				
	Read repetition rate	90 kHz				
	Resolution	See table below				
	Refresh rate*	100 kHz				
	Timeout (monoflop time)	10 μs				

^{*} The position is captured internally every 10 µs (for SSI and SPI only).

Available resolutions

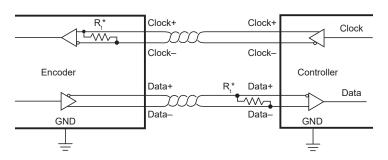
Resolution
13B - 2/2 ¹³ mm (0.244140625 μm)
12B - 2/2 ¹² mm (0.48828125 μm)
11B - 2/2 ¹¹ mm (0.9765625 μm)
2D0 - 2/2000 mm (1 μm)
10B - 2/2 ¹⁰ mm (1.953125 μm)
09B - 2/2 ⁹ mm (3.90625 μm)
08B - 2/2 ⁸ mm (7.812 μm)
07B - 2/2 ⁷ mm (15.625 μm)
06B - 2/2 ⁶ mm (31.25 μm)
05B - 2/2 ⁵ mm (62.5 μm)
04B - 2/2 ⁴ mm (125 μm)

Communication interface options

Parallel incremental signals	SSI	BiSS	SPI
None	SC	DC	SP
Incremental AB, RS422; 5 V	SI	DI	SQ
Analogue voltage 1 Vpp	SB	DA	SR

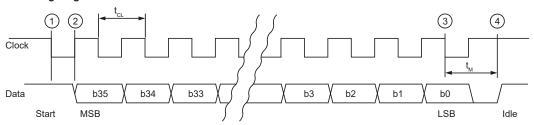
LA11 always reports the position data in 26 bit binary format. Table below shows the bit values in position data for different resolutions:

		Bits	eporte	d positi	on in L	A11 ou	tput me	essage																			Weight of	Weight of "last
Resolution	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	LSB (µm)	active" bit (µm)
13B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0.244140625	0.244140625
12B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0.244140625	0.48828125
11B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0.244140625	0.9765625
2D0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0.250	1
10B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0.244140625	1.953125
09B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0.244140625	3.90625
08B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0.244140625	7.8125
07B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0.244140625	15.625
06B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0	0.244140625	31.25
05B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0	0	0.244140625	62.5
04B	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0	0	0	0	0	0.244140625	125


Position data on serial interfaces has fixed length of 26 bits. If selected resolution is less than 13 bits, then unused lower bits are set to 0.

SSI - Synchronous serial interface

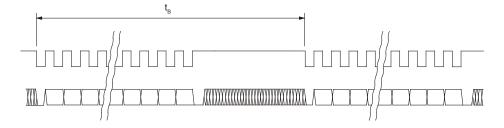
The encoder position, in up to 26 bit natural binary code, and the encoder status are available through the SSI protocol. The position is captured internally every 10 µs (refresh rate 100 kHz). Output position data is the last captured data before position request trigger. Request trigger is a falling edge of clock signal. The position data is left aligned, MSB first. After the position data there are two general status bits (active status low) followed by the detailed status information.


Electrical connection

Line signa	Line signals				
Clock+	Receiver, + input				
Clock-	Receiver, - input				
Data+	Transmitter, + output				
Data-	Transmitter, – output				

* The Clock and Data lines are 5 V RS422 compatible differential pairs. The termination resistor on the Clock line is integrated inside the encoder. If the total cable length is longer than 5 m, termination on the end of the Data line at the controller end is required. The nominal impedance of cable is 120 Ω.

SSI timing diagram



The controller interrogates the readhead for its position and status data by sending a pulse train to the Clock input. The Clock signal always starts from high. The first falling edge ① latches the last position data available and on the first rising edge ② the most significant bit (MSB) of the position is transmitted to the Data output. The Data output should then be latched on the following falling edge. On subsequent rising edges of the Clock signal the next bits are transmitted. If time between ① and ② is extended for additional 1 µs then maximum clock frequency limit is 2.5 MHz instead of 0.8 MHz. This function is called "Delay First Clock" and must be supported by the controller the encoder is connected to.

After the transmission of the last bit $^{\circ}$ the Data output goes to low. When the t_{M} time expires, the Data output is logical "H" $^{\circ}$. The Clock signal must remain high for at least t_{M} before the next reading can take place.

While reading the data, the period t_{CL} must always be less than t_{M} . However, reading the encoder position can be terminated at any time by setting the Clock signal to high for the duration of t_{M} .

Maximum reading rate is defined by time t_h. If the reading request arrives earlier than t_n, the encoder position will not be updated.

Communication parameters

Parameter	Symbol	Min	Тур	Max
Clock period	t _{cL}	1.25 µs (400 ns*)		10 µs
Clock frequency	f _{CL}	100 kHz		0.8 MHz (2.5 MHz*)
Monoflop time	t _M	10 µs		
Update time	t _B	65 μs (34.4 μs*)		

^{*} With *Delay First Clock* function on the controller.

Туре	Value 0	Value 1	Possible reason for failure
Error	Position data is invalid.	OK	Error bit is active low. If low, the position is not valid. Possible reasons: - The readhead is out of alignment with the magnetic scale. - The magnetic scale is demagnetised. - Incorrect orientation of readhead and magnetic scale. - Distance between the readhead and the magnetic scale is too large. - Speed of movement too high.
Warning	Position data is valid.	OK	Warning bit is active low. If low, the encoder operation is close to its limits (> 80% of maximum temperature). The position is still valid.

SSI - position with two general and detailed status bits

Structure of data packet

Bit	b35 : b10	b9 : b8	b7 : b0
Data length	26 bits	2 bits	8 bits
Meaning	Encoder position	General status	Detailed status

Encoder position

b35 : b10 Encoder position, left aligned, MSB first. Unused lower bits are set to 0. LSB bit = $2000 \mu m / 2^{13}$

General	status	
	b9	Error. If bit is "L", position is not valid.
	b8	Warning. If bit is "L", encoder is near operational limits. Position is valid.

Error and Warning bits can be set at the same time; in this case Error bit has priority.

The color of the LED on the readhead housing indicates the value of the General status bits:

Red = Error, Orange = Warning, Green = Normal operation. Red or Orange or Green indicator flashing = no communication running between controller and encoder. No light = no power supply or general failure. The warning or error status is more closely defined by the Detailed status bits.

Detailed status	
b7	Not used - always 0.
b6	Error - The distance between the readhead and the magnetic scale is too large.
b5	Error - Signal lost. The readhead is out of alignment with the magnetic scale or the magnetic scale is demagnetised. Incorrect orientation of readhead and magnetic scale.
b4	Warning - Temperature. The readhead temperature is close to operational limits [> 80% of maximum temperature].
b3	Not used - always 0.
b2	Not used - always 0.
b1	Not used - always 0.
b0	Error - Frequency. Speed of movement too high.

SSI - position with two general status bits

Data packet is 28 bits long, MSB first, left aligned. It provides position and two general error warning status bits. All resolutions are available.

Structure of data packet

Bit	b27 : b2	b1 : b0
Data length	26 bits	2 bits
Meaning	Encoder position	General status

Encoder	Encoder position					
	b27 : b2	Encoder position, left aligned, MSB first. Unused lower bits are set to 0. LSB bit = $2000 \mu m / 2^{13}$				
General	status					
	b1	Error. If bit is "L", position is not valid.				
	b0	Warning. If bit is "L", encoder is near operational limits. Position is valid.				
Error and Warning bits can be set at the same time; in this case Error bit has priority. The color of the LED on the readhead housing indicates the value of the General status bits: Red = Error, Orange = Warning, Green = Normal operation. Red or Orange or Green indicator flashing = no communication running between controller and encoder. No light = no power supply or general failure.						

SSI - position only mode

Data packet is 26 bits long, MSB first, left aligned. It provides position only without status bits. All resolutions are available.

Structure of data packet

Bit	b25 : b0
Data length	26 bits
Meaning	Encoder position

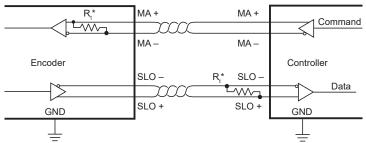
Encoder position	
b25 : b0	Encoder position, left aligned, MSB first. Unused lower bits are set to 0. LSB bit = $2000 \mu m / 2^{13}$

SSI output »position only« with 1 μm resolution has 24 bit long position data word.

SSI - position only in Gray code

This mode provides position only in the reflected binary code, also known as Gray code.

LA11D01_10

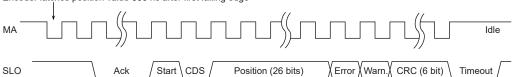

BiSS-C interface

The encoder position, in up to 26 bit natural binary code, and the encoder status are available through the BiSS-C protocol. The position data is left aligned, MSB first. After the position data there are two status bits (active low) followed by CRC (inverted).

BiSS is implemented for point-to-point operation; multiple slaves are not supported.

Repetition of reading is maximum 27,000 times per second. If higher, the same position data will be reported. Note that 27 kHz is not achievable for all MA clock frequencies (because data transmission takes too long).

Electrical connection



Signals	Signals					
MA	Master clock.					
SLO	Slave out. Data is output on rising edge on SCK. Data is valid on the falling edge of SCK signal.					

*The MA and SLO lines are 5 V RS422 compatible differential pairs. The termination resistor on the MA line is integrated inside the readhead. If the total cable length is longer than 5 m, termination on the end of the SLO line at the controller side is recommended end is required. The nominal impedance of the cable is 120 Ω.

BiSS-C timing diagram

Encoder latches position value 500 ns after first falling edge

Encoder responds to the controller commands by saving the position value 500 ns after the falling edge of the MA signal. MA is idle high. Communication is initiated with first falling edge.

The encoder responds by setting SLO low on the second rising edge on MA.

Ack is the period during which the readhead calculates the absolute position and it is described in ordering code on page 19.

When the encoder is ready for the next request cycle it indicates this to the master by setting SLO high.

The CRC is in binary format and sent MSB first. The absolute position is in binary format and sent MSB first, left aligned, unused lower bits are set to zero. CDS bit is always zero.

Communication parameters

Parameter	Min	Тур	Max	Description
Clock frequency	50 kHz	-	A/B*	Master clock frequency
Timeout	-	-	20 µs	Communication timeout

^{*}Please see ordering code on page 19.

Status bits

Туре	Value 0	Value 1	Possible reason for failure
Error	Position data is invalid.	ОК	Error bit is active low. If low, the position is not valid. Possible reasons: - The readhead is out of alignment with the magnetic scale. - The magnetic scale is demagnetised. - Incorrect orientation of readhead and magnetic scale. - Distance between the readhead and the magnetic scale is too large. - Speed of movement too high.
Warning	Position data is valid.	OK	Warning bit is active low. If low, the encoder operation is close to its limits (> 80% of maximum temperature). The position is still valid.

Data packet description

Position data on serial interfaces has fixed length of 26 bits. If selected resolution is less than 13 bits, then unused lower bits are set to 0. See chapter "Available resolutions" on page 9.

Polynomial for CRC calculation of position, error and warning data is: $x^6 + x^1 + 1$. Represented also as 0x43. The start bit and CDS bit are omitted from the CRC calculation. It is inverted and transmitted MSB first.

Example of calculation routine for 6-bit CRC can be found in application note CRCD01.

For more information regarding BiSS protocol see www.biss-interface.com.

SPI - Serial peripheral interface (slave mode)

The SPI interface is designed for communication with nearby devices. The position is internally captured every 10 μ s (refresh rate 100 kHz). Output position data is the last valid captured data before position request trigger. Request trigger is a high to low transition of the CS signal.

Electrical connection

Possible data signals are 3.3 V LVTTL or 5 V TTL (see part numbering).

Signal	Description
CS	Active low. $\overline{\text{CS}}$ line is used for synchronisation between master and slave devices. During communication it must be held low. Idle is high. Rising edge on $\overline{\text{CS}}$ signal resets the SPI interface.
SCK	Clocks out the data on rising edge. Max frequency 4 MHz.
MISO	Data is output on rising edge on SCK after $\overline{\text{CS}}$ low. Data is valid on the falling edge of SCK signal. During $\overline{\text{CS}}$ =1 MISO line is in high-Z mode.

Communication parameters

Parameter		Symbol	Min	Тур	Max	Note
Clock frequency		$f_{\scriptscriptstyle CLK}$	1 Hz		4 MHz	
Time after $\overline{\text{CS}}$ low to first CLK rising edge		t _s	1 µs			
Time after last CLK fa	Time after last CLK falling edge to $\overline{\text{CS}}$ high		1 µs			
CS high time	CS high time		1 µs			Time to complete SPI reset
Read repetition	Simple mode				90 kHz	
rate*	Advance mode	I _{REP}			60 kHz	

^{*}Note that maximum read repetition rate is not achievable for all clock frequencies (because data transmission takes too long).

Communication interface variant in the part numbering defines the SPI interface type and all dependent parameters.

Communication interface variant (part numbering)	Description	Parameter	Value
			Selectable (see part numbering)
SP (variant A)	SPI slave - simple mode	Status	All status bits are available through the SPI
		Data length	28 bit data packet - position, status
		Resolution	Selectable (see part numbering)
SP (variant B)	SPI slave - advanced mode	Status	All status bits are available through the SPI
		Data length	44 bit data packet - position, status, detailed status, CRC

Status bits:

Туре	Value 0	Value 1	Possible reason for failure
Error	Position data is invalid.	OK	Error bit is active low. If low, the position is not valid. Possible reasons: - The readhead is out of alignment with the magnetic scale. - The magnetic scale is demagnetised. - Incorrect orientation of readhead and magnetic scale. - Distance between the readhead and the magnetic scale is too large. - Speed of movement too high.
Warning	Position data is valid.	OK	Warning bit is active low. If low, the encoder operation is close to its limits (> 80% of maximum temperature). The position is still valid.

LA11D01_10

SPI slave - simple mode (variant A)

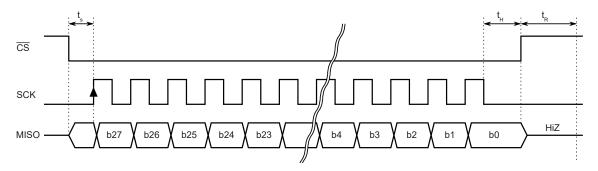
Structure of data packet

Position is 26 bits long - MSB first, left aligned. After the position data there are two general status bits (active "L"). Repetition of reading is maximum 90,000 times per second.

Bit	b27 : b2	b1 : b0	
Data length	26 bits	2 bits	
Meaning	Encoder position	General status	

Encoder position

b27:b2 Encoder position, left aligned, MSB first. Unused lower bits are set to 0. LSB bit = $2000 \mu m / 2^{13}$


General	status	
	b1	Error. If bit is "L", position is not valid.
	b0	Warning. If bit is "L", encoder is near operational limits. Position is valid.

Error and Warning bits can be set at the same time; in this case Error bit has priority.

The color of the LED on the readhead housing indicates the value of the General status bits:

Red = Error, Orange = Warning, Green = Normal operation. Red or Orange or Green indicator flashing = no communication running between controller and encoder. No light = no power supply or general failure.

SPI slave timing diagram (variant A)

SPI slave - advanced mode (variant B)

Structure of data packet

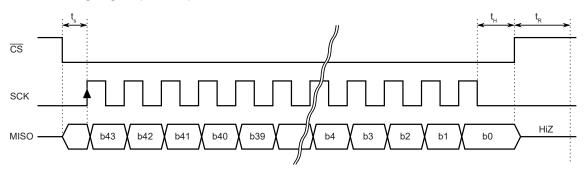
Data packet is 44 bits long. In every particulary word (position, CRC) MSB is first. Repetition of reading is maximum 60,000 times per second. Note that 60 kHz is not achievable for all clock frequencies (because data transmission takes too long).

Bit	b43 : b18	b17 : b16	b15 : b8	b7 : b0
Data length	26 bits	2 bits	8 bits	8 bits
Meaning	Encoder position	General status	Detailed status	CRC

Encoder position

b43 : b18 Encoder position, left aligned, MSB first. Unused lower bits are set to 0. LSB bit = 2000 µm / 2¹³

		<u>'</u>
General sta	itus	
b17 Error. If bit is "L", position is not valid.		Error. If bit is "L", position is not valid.
b1	16	Warning. If bit is "L", encoder is near operational limits. Position is valid.


Error and Warning bits can be set at the same time; in this case Error bit has priority.

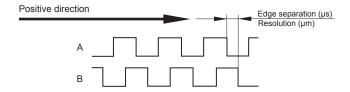
The color of the LED on the readhead housing indicates the value of the General status bits:

Red = Error, Orange = Warning, Green = Normal operation. Red or Orange or Green indicator flashing = no communication running between controller and encoder. The warning or error status is more closely defined by the Detailed status bits.

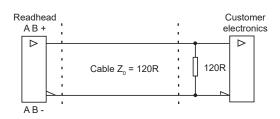
etailed	d status							
	b15	Not used.						
	b14 Error - The distance between the readhead and the magnetic scale is too large.							
	b13	Error - Signal lost. The readhead is out of alignment with the magnetic scale or the magnetic scale is demagnetised. Incorrect orientation of readhead and magnetic scale.						
	b12	Warning - Temperature. The readhead temperature is close to operational limits (>80 % of maximum temperature).						
	b11	Not used - always 0.						
	b10	Not used - always 0.						
	b9	Not used - always 0.						
	b8	Error - Frequency. Speed of movement too high.						
C								
	b7 : b0	CRC check with polynomial 0x97						

SPI slave timing diagram (variant B)

LA11D01_10



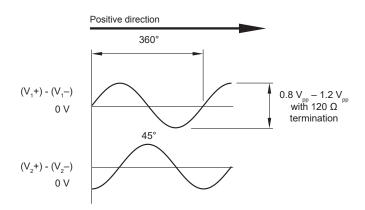
Square wave differential line driver to EIA RS422


Output signals	2 square-wave signals A, B and their inverted signals A –, B –
Signal level	Differential line driver to EIA standard RS422: $U_H \ge 2 \text{ V at} - I_H = 50 \text{ mA}$ $U_L \le 0.5 \text{ V at } I_L = 50 \text{ mA}$
Permissible load	$Z_0 \ge 100~\Omega$ between associated outputs $I_L \le 50~\text{mA}$ max. load per output Capacitive load $\le 1000~\text{pF}$ Outputs are protected against short circuit to 0 V and to +5 V

Timing diagram

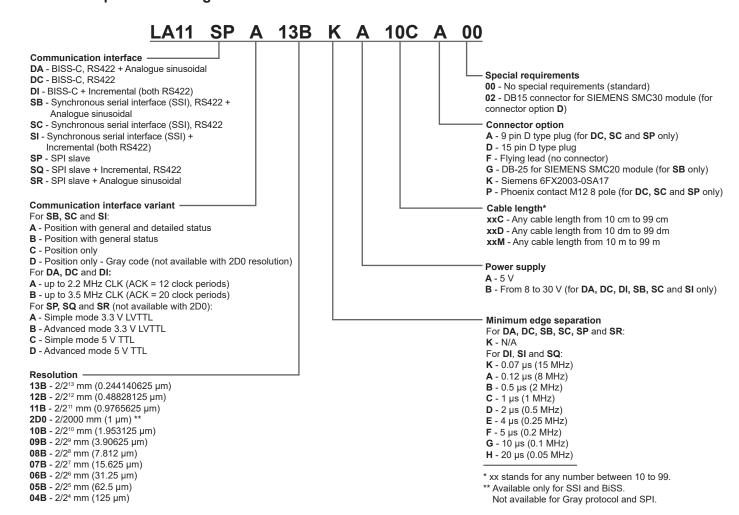
Complementary signals not shown

Recommended signal termination



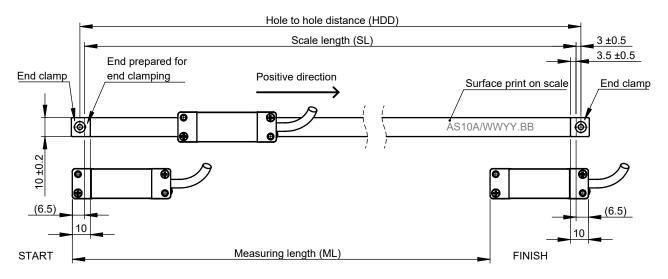
Analogue sinusoidal output signals (1 V_{pp}) \sim

The sinusoidal incremental signals A and B are phase-shifted by 90° elec. and have an amplitude of typically 1 V_{pp} .


Output signals	V ₁ , V ₂				
Sin/cos signals	Amplitude (with 120 Ω termination)	0.8 V_{pp} to 1.2 V_{pp}			
Termination	Z_0 = 120 Ω between asso	ciated outputs			

Timing diagram

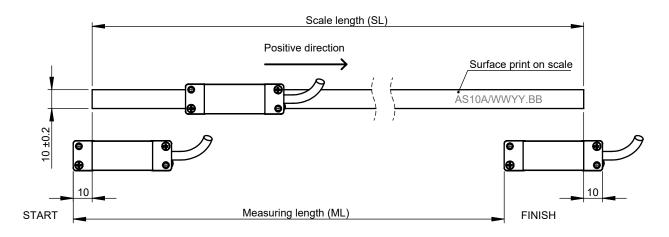
Readhead part numbering



NOTE: Not all combinations are valid. Please check below table for available options.

Series	Communication interface	Communication interface variant	Resolution	Minimum edge separation	Power supply	Cable length	Connector options	Special requirements
LA11	DA	. A/B	13B / 12B / 11B / 2D0 / 10B / 9B / 08B / 07B / 06B / 05B / 04B	К	A/B A	xxC / xxD / xxM	D/F/K	00
	DC						A/D/F/K/P	
	DI			K/A/B/C/D/ E/F/G/H			D/F/K	
	SB	A/B/C/D		К			D/F/G/K	
	SC						A/D/F/K/P	
	SI			K/A/B/C/D/ E/F/G/H			D/F/K	
	SP		13B / 12B / 11B / 10B / 9B / 08B / 07B / 06B / 05B / 04B	К			A/D/F/K/P	
	SQ			K/A/B/C/D/ E/F/G/H			D/F/K	
	SR			К				

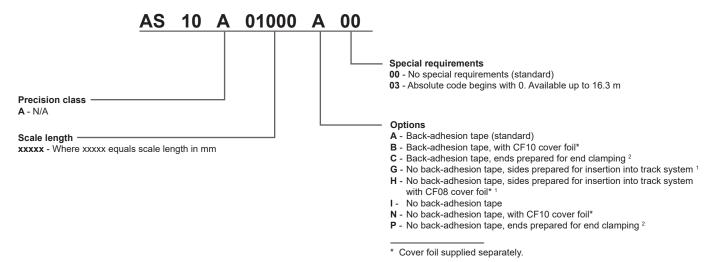
Installation of magnetic scale:


a. Using end clamps

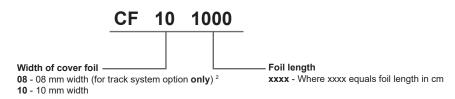
 $^{^{\}star}$ HHD (for end clamp mounting) = SL + (6 mm ±1 mm) ** ML = SL - 39 mm

NOTE: Scale surface print does not represent the actual ordering code. For orientation purpose only.

b. Using back-adhesion tape



*** ML = SL - 32 mm


NOTE: Scale surface print does not represent the actual ordering code. For orientation purpose only.

AS10 magnetic scale part numbering

Cover foil part numbering

¹ For details on TRS system please refer to data sheet LM10D18 on www.rls.si/lm10.

² For details on end clamp installation please refer to data sheet LM10D14 on www.rls.si/lm10.

Data sheet LA11D01_10

Accessories part numbering

End clamp kit (2 clamps + 2 screws)

LM10ECL00

USB encoder interface

E201-9S or E201-9Q

For details on E201 interfaces please refer to data sheet E201 on www.rls.si/e201.

Applicator tool for magnetic scale **LMA10ASC00**

Magnet viewer MM0001

Accessories for MS Track System

Track section, 1.00 m

TRS100A00

Track section, 2.00 m

TRS200A00

Scale clamp, 0.04 m

TRE004A00

Joining element, 0.04 m

TRE004A01

Screw and washer

TRC00

Head office

RLS merilna tehnika d.o.o.

Poslovna cona Žeje pri Komendi Pod vrbami 2 SI-1218 Komenda Slovenia

T +386 1 5272100 F +386 1 5272129 E mail@rls.si www.rls.si

Document issues

Issue	Date	Page	Corrections made				
6	6 13. 12. 2017		Storage and handling amended				
		5	Technical specifications amended				
		6, 7, 8	Graphs added and amended				
		9	Cable specifications amended, 15-pin amended				
		11	Available resolution amended				
		21	AS part numbering amended				
7	7 28. 5. 2018		Fechnical specifications amended				
		11	New electrical connections added				
		22	AS magnetic scale part numbering amended				
		23	Accessories part numbering amended				
8	3. 2. 2020	3	Ride height for special option 01 removed				
			CTE value corrected				
		11	SPI ouput for Phoenix connector added				
		22	Direction of the readhead explicitly shown, special option 01 removed from AS part numbering				
9	15. 7. 2020	12, 16, 21	16, 21 BiSS-C Maximum clock frequency and latency amended				
10	11. 9. 2020	3	Dimensions drawing amended				
		22	Drawing amended				

This product is not designed or intended for use outside the environmental limitations and operating parameters expressly stated on the product's datasheet. Products are not designed or intended for use in medical, military, aerospace, automotive or oil & gas applications or any safety-critical applications where a failure of the product could cause severe environmental or property damage, personal injury or death. Any use in such applications must be specifically agreed to by seller in writing, and is subject to such additional terms as the seller may impose in its sole discretion. Use of products in such applications is at buyer's own risk, and buyer will indemnify and hold harmless seller and its affiliates against any liability, loss, damage or expense arising from such use. Information contained in this datasheet was derived from product testing under controlled laboratory conditions and data reported thereon is subject to the stated tolerances and variations, or if none are stated, then to tolerances and variations consistent with usual trade practices and testing methods. The product's performance outside of laboratory conditions, including when one or more operating parameters is at its maximum range, may not conform to the product's datasheet does not reflect the performance of the product in any application, end-use or operating environment buyer or its customer may put the product to. Seller and its affiliates make no recommendation, warranty or representation as to the suitability of the product for buyer's application, use, end-product, process or combination with any other product for buyer's application, end-use and/or operating environment, and should not rely on any oral or written statement, representation, or samples made by seller or its affiliates for any purpose. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH IN THE SELLER'S TERMS AND CONDITIONS OF SALE, SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED WITH RESPECT TO THE PRODUCT, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PART

RLS merilna tehnika d.o.o. has made considerable effort to ensure the content of this document is correct at the date of publication but makes no warranties or representations regarding the content. RLS merilna tehnika d.o.o. excludes liability, howsoever arising, for any inaccuracies in this document.