

Application note BRD05_01 Issue 1, 22nd August 2018

Orbis BiSS-C register access

Brief description

BiSS-C interface implemented in Orbis supports bidirectional communication in register access mode. Readhead is user programmable and comprises 4 kB of user memory. Implementation is compliant with BiSS Standard Encoder Profile (also referred to as "BP3") which is used for grouping linear and rotary encoders. Details on BiSS register access and BP3 can be found in iC-Haus documentation.

User implementation

User can implement bidirectional BiSS into own hardware according to BiSS documentation supplied by iC-Haus. User can also use iC-Haus iC-MB4 chip which translates high-level commands on the SPI bus to BiSS. Easiest to use is E201-9B interface from RLS including the accompanying software.

Application note BRD05_01

Registers description

BiSS memory map for Orbis

Bank	Address	Data type	Access	Description
	0x00 - 0x03	U32	R/W	Position offset
	0x04 - 0x07	U32	R/W	Multiturn counter preset
	0x08 - 0x2D	U8	R	Reserved
	0x2E	U8	R/W	Write protect lock
0	0x2F - 0x30	U16	R	FW major version
	0x31 – 0x32	U16	R	FW minor version
	0x33 – 0x34	U16	R	Protocol version
	0x35 – 0x36	U16	R	Revision number
	0x3F	U8	R	Checksum of bank 0
1 - 15	0x00 – 0x3F	U8	R	Reserved
16	0x00 – 0x3F	U8	R	BiSS EDS common part
17	0x00 – 0x3F	U8	R	BiSS EDS standard encoder profile
18 - 23	0x00 – 0x3F	U8	R	Reserved
24 - 87	0x00 – 0x3F	U8	R/W	User memory
	0x40	U8	R/W	Bank select
	0x41	U8	R	EDS bank
	0x42 - 0x43	U16	R	Profile ID
	0x44 – 0x47	U32	R	Serial number
	0x48	U8	R/W	Key register
	0x49	U8	R/W	Command register
	0x4A – 0x4B	U16	R	Encoder status (table A)
	0x4C - 0x4D	U16	R	Temperature
	0x4E – 0x4F	U16	R	Rotational speed
Direct access	0x50	U8	R	Self-calibration status
	0x51-0x52	U16	R	Signal level
	0x53	U8	R	Multiturn status
	0x54-0x5B	U8	R	Reserved
	0x5C – 0x61	U8	R	RLS serial number
	0x62 - 0x63	U8	R	Reserved
	0x64 – 0x73	U8	R	RLS part number
	0x74 – 0x77	U8	R	Reserved
	0x78 – 0x7D	U48	R	Device ID
	0x7E – 0x7F	U16	R	Manufacturer ID

U16, U32, U48 data is saved as a Big Endian (highest-value byte at the lowest-value address).

BiSS EDS common part

Address	Symbol	Description	Data type	Unit	Value
0x00	EDS_VER	EDS version	U8	-	1
0x01	EDS_LEN	EDS length	U8	banks	2
0x02	USR_STA	Bank address USER start	U8	-	24
0x03	USR_END	Bank address USER end	U8	-	87
0x04	TMA	Min. permitted clock period	U8	1 ns	200
0x05	TO_MIN	Min. BiSS timeout	U8	250 ns	52
0x06	TO_MAX	Max. BiSS timeout	U8	250 ns	60
0x07	TOS_MIN	Min. BiSS timeout_S	U8	25 ns	0
0x08	TOS_MAX	Max. BiSS timeout_S	U8	25 ns	0
0x09	TCLK_MIN	Min. sampling period adaptive timeout	U8	25 ns	0
0x0A	TCLK_MAX	Max. sampling period adaptive timeout	U8	25 ns	0
0x0B	TCYC	Min. cycle time	U8	250 ns	100
0x0C	TBUSY_S	Max. processing time SCD	U8	250 ns	0
0x0D	BUSY_S	Max. processing time SCD in clocks	U8	TMA	5
0x0E - 0x0F	PON_DLY	Max. "power on delay" until control communication is available	U16	1 ms	100
0x10	DC_NUM	Number of data channel in this device	U8	-	1
0x11	SL_NUM	Area of validity for this EDS (number of slave addresses)	U8	-	1
0x12	SL_OFF	Memory location for this EDS (slave ID within this device)	U8	-	0
0x13		Reserved	U8		0
0x14	BANK1	Bank address for content description of data channel 1 (Profile EDS)	U8	-	17
0x15	DLEN1	Data length for data channel 1	U8	bit	table B
0x16	FORMAT1	Data format for data channel 1	U8	bit	2
0x17	CPOLY1	CRC polynomial (8:1) for data channel 1	U8	-	0x21
0x18 – 0x33		Reserved	U8		0
0x34	BC_OFF	Bus coupler control location for this device (slave ID within this device)	U8	-	0
0x35 – 0x3E		Reserved	U8		0
0x3F	CHKSUM	Checksum (sum of all bytes within this bank)	U8	-	хх

U16 data is saved as a Big Endian (highest-value byte at the lowest-value address).

Table A

Encoder status:

0x4A:

- b7: System error
- b6: System error
- b5: Angle comparison error
- b4: Safety comparison error
- b3: Reserved b2: Reserved
- b1: Global error. If high, the position data is not valid.

b0: Global warning. If high, the position is valid, but some operating conditions are close to limits.

0x4B:

b7: Signal amplitude too high. The readhead is too close to the magnet or an external magnetic field is present.

b6: Signal amplitude low. The distance between the readhead and the ring is too large.

- b5: The readhead temperature is out of specified range.
- b4: Speed too high.
- b3: Multiturn error/warning (optionally)
- b2: Reserved
- b1: Reserved
- b0: Reserved

Table B

EDS parameter	Encoder type			
EDS parameter	14 bit ST	14 bit MT		
DLEN1	16	32		

ST - Singleturn MT - Multiturn

BiSS EDS standard encoder profile

Address	Symbol	Description	Data type	Unit	Value
0x00	BP_VER	BiSS profile 3 version	U8	-	1
0x01	BP_LEN	Length of this profile	U8	banks	1
0x02 – 0x03	BP_ID	Profile identification BP3 (content also available in addresses 0x42 and 0x43)	U16	-	table C
0x04	FB1	Feedback bit 1 (nError = 1)	U8	-	1
0x05	FB2	Feedback bit 2 (nWarning = 2)	U8	-	2
0x06	PON_PDL	Max. "power on delay" until position data is available	U8	ms	100
0x07		Reserved	U8	-	0
0x08	EN_TYP	Encoder type (rotary = 0)	U8	-	0
0x09	POS_NUM	Position value (1 position)	U8	-	1
0x0A	MT_LEN	Data length MULTITURN	U8	bit	table C
0x0B	MT_FMT	Data format MULTITURN	U8	-	table C
0x0C	CO_LEN	Data length COARSE	U8	bit	0
0x0D	CO_FMT	Data format COARSE	U8	-	0
0x0E	FI_LEN	Data length FINE	U8	bit	table C
0x0F	FI_FMT	Data format FINE	U8	-	0
0x10 – 0x13	MT_CNT	Number of distinguishable revolutions	U32	count	table C
0x14 – 0x17	SIP_CNT	Number of signal periods per revolution	U32	PPR	1
0x18 – 0x1B	SIP_RES	Resolution factor per signal period (LSB of interpolation)	U32	count	table C
0x1C – 0x1F	CPOLY	CRC polynomial (32:1 of 0x43)	U32	-	0x21
0x20 – 0x23	CSTART	CRC start value	U32	-	0
0x24 – 0x25	ABS_ACU	Absolute accuracy	U16	LSB/2	18
0x26 – 0x27	REL_ACU	Relative accuracy	U16	LSB/2	0
0x28 – 0x29	SPD_ACU	Angular speed depending accuracy	U16	LSB/2	0
0x2A – 0x2B	HYST	Hysteresis	U16	LSB/2	0
0x2C – 0x2D	SPD_MAX	Max. revolution speed	U16	1/min	10000
0x2E – 0x2F	ACC_MAX	Max. revolution acceleration	U16	1/min2	0
0x30 – 0x31	TMP_MIN	Min. operating temperature	U16	к	273
0x32 – 0x33	TMP MAX	Max. operating temperature	U16	К	358 (378)
0x34 – 0x35	VLT MIN	Min. operating voltage	U16	mV	4500
0x36 – 0x37	VLT_MAX	Max. operating voltage	U16	mV	5500
0x38 – 0x39	CUR MAX	Max. current consumption	U16	mA	70
0x3A – 0x3E		Reserved	U8		0
0x3F	CHKSUM	Checksum (sum of all bytes within this bank)	U8	-	xx

U16, U32 data is saved as a Big Endian (highest-value byte at the lowest-value address).

Table C

Encoder type	EDS BP3 parameter						
Encoder type	BP_ID	MT_LEN	MT_FMT	FI_LEN	MT_CNT	SIP_RES	
14 bit ST	0x6210	0	0	14	0	16384	
14 bit MT	0x6220	16	1	14	65536	16384	

ST - Singleturn **MT** - Multiturn

Bank switching

BiSS registers are grouped into the banks in size of 64 bytes. Each register in each bank can be accessed with the address from 0x00 to 0x3F. Before access to a certain bank, it has to be selected in the Bank select register, which is mapped to address 0x40. For further information on bank switching refer to documentation provided by iC-Haus.

Read access

All registers in Orbis memory are readable. Read access also supports sequential reading. It is possible to read up to 64 bytes forward from initialized read address. For detailed description on sequential read access refer to documentation provided by iC-Haus.

Write access

Writable registers in Orbis memory are presented in table "Memory map". All registers can be write protected if write access is locked by the user, except of Bank select register. Sequential write access is only available in User memory banks, elsewhere it will be refused. For detailed description on sequential write access refer to documentation provided by iC-Haus.

Orbis programming

Position offset (encoder zero position), multiturn counter (optional) and register write protection can be programmed to the Orbis readhead. Additionally, the readhead can be self-calibrated or reset to factory settings.

Position offset (encoder zero position)

Position offset is mapped to the registers 0x00, 0x01, 0x02, 0x03 of bank 0 in a big-endian format. User must first write separate bytes of a new position offset in counts to these addresses. Afterwards, they can be read to verify the proper write operation. At this moment, new position offset is not active yet. To validate it, user must first unlock the command register by writing the KEY. Next register access must be a write of the Command for saving programmed data to a non-volatile memory.

KEY: value 0xCD to address 0x48 Command for saving programmed data to a non-volatile memory: ASCII 'c' (0x63) to address 0x49

Note: Programming of position offset larger than encoder resolution or smaller than zero is discarded.

Multiturn counter

Multiturn counter preset is available only in multiturn Orbis. It is mapped to the registers 0x04, 0x05, 0x06, 0x07 of bank 0 in a big-endian format. User must first write separate bytes of a new multiturn counter to these addresses. Afterwards, they can be read to verify the proper write operation. At this moment, new multiturn counter is not active yet. To validate it, user must first unlock the command register by writing the KEY. Next register access must be a write of the Command to validate the multiturn counter value.

KEY: value 0xCD to address 0x48 Command for validation of multiturn counter: ASCII 'm' (0x6D) to address 0x49

Note: Programming of multiturn counter larger than 65535 (unsigned) is discarded.

Self-calibration

Self-calibration of the Orbis is suitable after assembly of the readhead. It improves the accuracy of the encoder, which is dependent on the installation precision. User must first unlock the command register by writing the KEY (0xCD) to the Key register (address 0x48). Next register access must be a write of the SelfCal command (0x41) to the Command register (address 0x49) for starting self-calibration procedure. During the procedure, communication over BiSS interface is not possible; encoder will not respond to any incoming clock cycles. Procedure completion is indicated by fast LED blinking for 3 seconds. If self-calibration was successful, LED blinks green, otherwise it blinks red. After that, BiSS interface is active again. The self-calibration status can be read from a register 0x50. It comprises a two bit counter and two status bits. Counter is incremented after end of each self-calibration procedure. Error bits show success or reasons for failure.

Before self-calibration procedure, the status from the register 0x50 should be read. Controller must remember current self-calibration counter (bits 1:0). After the command for self-calibration is sent, LED has to be observed for the procedure completion. If LED is not visible, the readhead should be polled via BiSS interface until communication with the readhead is established again or waiting for 10 seconds, which is the longest possible time for completion. After that, self-calibration status register should be read again. If self-calibration counter has increased by 1 (compared to the value read before), the self-calibration function was completed. If self-calibration was successful, both of status bits (b3, b2) are zero.

Rotational speed and direction during self-calibration is not important and could be uneven. The only requirement is that the shaft makes at least one complete turn during 10 second period after the command was sent.

Self-calibrat	tion status	register	at address	0x52:

Bit	Meaning
b7 - b4	Reserved
b3	Calculated parameters out of range. Mechanical installation is not inside tolerances.
b2	Timeout. Encoder ring did not make a complete turn during 10 seconds.
b1	Counter bit 1
b0	Counter bit 0

KEY: value 0xCD to address 0x48

Command for starting self-calibration procedure: ASCII 'A' (0x41) to address 0x49.

Reset to factory settings

Reset to factory settings will set all programmed parameters to the default ones. User must first unlock the command register by writing the KEY. Next register access must be a write of the Command to reset readhead to the factory settings.

KEY: value 0xCD to address 0x48

Command to reset readhead to the factory settings: ASCII 'r' (0x72) to address 0x49

Write protection

Write protection can be used to lock the write access of any writable register in Orbis memory map, except of Bank select register. It is mapped to the register 0x2E of bank 0. Its default value is 0x5A. To lock the write access, user should write any value other than 0x5A. To validate write protection, the user should also save it to a non-volatile memory. Write protection byte could be read back and verified after power cycle. After that, the write access of any register, except of Bank select, will be refused.

All registers will behave as a non writable registers.

The whole procedure is shown below.

WRITE PROTECT: any value other than 0x5A to address 0x2E KEY: value 0xCD to address 0x48 Command for saving programmed data to a non-volatile memory: ASCII 'c' (0x63) to address 0x49

Note: After locking the write access, the readhead cannot be programmed anymore. It also cannot be reset to the factory settings. All registers are still readable.

User memory

User memory space comprised of 4 kB of RW registers is mapped between banks 24 and 87. User must first write desired data to these registers. Afterwards, the data has to be stored in a non-volatile memory. To do that, user must first unlock the command register by writing the KEY. Next register access must be a write of the Command to save user data to a non-volatile memory.

User memory banks also supports sequential write access. It is possible to write several consecutive registers in one access. For detailed description on sequential write access refer to documentation provided by iC-Haus.

KEY: value 0xCD to address 0x48

Command for saving user data to a non-volatile memory: ASCII 'u' (0x75) to address 0x49

Note: User memory is no longer writable if write access is locked by the user.

Additional BiSS-C register access documentation

Documentation provided by iC-Haus describes BiSS-C register access in details: <u>BiSS Protocol Description</u>, <u>BiSS EDS Common Part</u>, <u>BiSS Standard Encoder Profile (BP3)</u>, <u>BiSS register access details 1</u>, <u>BiSS register access details 2</u>.

Head office

RLS merilna tehnika d.o.o. Poslovna cona Žeje pri Komendi Pod vrbami 2 SI-1218 Komenda Slovenia

T +386 1 5272100 F +386 1 5272129 E sales@rls.si www.rls.si

Document issues

Issue	Date	Page	Corrections made
1	22. 8. 2018	-	New document

This product is not designed or intended for use outside the environmental limitations and operating parameters expressly stated on the product's datasheet. Products are not designed or intended for use in medical, military, aerospace, automotive or oil & gas applications or any safety-critical applications where a failure of the product could cause severe environmental or property damage, personal injury or death. Any use in such applications is at buyer's own risk, and buyer will indemnify and hold harmless seller and its affiliates against as the seller may impose in its sole discretion. Use of products in such applications is at buyer's own risk, and buyer will indemnify and hold harmless seller and its affiliates against any liability, loss, damage or expense arising from such use. Information contained in this datasheet was derived from product testing under controlled laboratory conditions and data reported thereon is subject to the stated tolerances and variations, or if none are stated, then to tolerances and variations consistent with usual trade practices and testing methods. The product's performance outside of laboratory conditions, including when one or more operating parameters is at its maximum range, may not conform to the product's datasheet. Further, information in the product's datasheet does not reflect the performance of the product in any application, end-use or operating environment buyer or its customer may put the product to. Seller and its affiliates make no recommendation, warranty or representation as to the suitability of the product for buyer's application, expertise and testing in selecting the product tor buyer's application, expertise and testing in selecting the product for buyer's application, expertise and testing in selecting the product for buyer's application, expertise and testing in selecting the product for buyer's application, expertise and testing in selecting the product for buyer's application, expertise and testing in selecting the product tor buyer's application,

RLS merilna tehnika d.o.o. has made considerable effort to ensure the content of this document is correct at the date of publication but makes no warranties or representations regarding the content. RLS merilna tehnika d.o.o. excludes liability, howsoever arising, for any inaccuracies in this document. © 2018 RLS d.o.o.