

RMB28 / RMF44 / RMF58

Rotary Magnetic Encoders

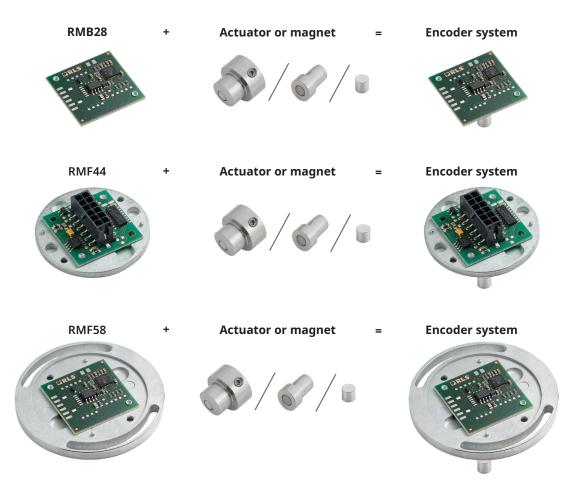
The RMB28 encoder module is designed for direct integration into high volume OEM applications.

The inexpensive 28 mm square PCB can also be supplied with a connector or as RMF44/RMF58 on a metal flange with 44 mm or 58 mm diameters for easy mounting. The RMB28/RMF44/RMF58 encoder modules can be used in a wide range of OEM applications, including motor control and industrial automation.

Features and benefits

- ▶ 5 V and 24 V power supply versions
- ► High speed operation to 60,000 rpm
- ► Absolute to 14 bit resolution (16,384 counts per revolution)
- ► Accuracy up to ±0.5°

- ▶ Inexpensive solution for OEM integration
- ► Industry standard absolute, incremental, analogue, commutation and linear voltage output formats



General information

The encoder module consists of a magnetic actuator and a separate sensor board. The rotation of the magnetic actuator is detected and processed by a custom encoder chip mounted on the sensor board to obtain the desired output format. The output signals are provided in industry standard absolute, incremental, analog or linear voltage output formats.

For commutation outputs please refer to **Commutation and incremental magnetic encoder solutions.**

Product range

AC

Analogue sinusoidal output with a single sine/cosine period per revolution.

DC

BiSS-C interface with up to 16,384 positions per revolution and optional revolution counter.

Incremental with up to 4,096 pulses per revolution (320 to 16,384 counts per revolution with 4× evaluation).

SC

Synchro serial interface (SSI) with up to 16,384 positions per revolution.

SI

Synchro serial interface (SSI) with 320 to 8,192 positions per revolution and incremental with 80 to 2,048 pulses per revolution (320 to 8,192 counts per revolution with x 4 evaluation).

Vx

Ι

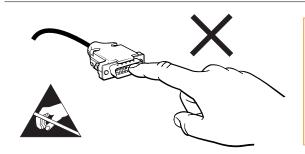
Linear voltage output in a range of variants.

Selection guide

		Power supply	
Product	Available outputs	5 V	24 V
RMB28 / RMF44 / RMF58	AC - Analogue sinusoidal outputs	✓	-
	DC - Absolute natural binary BiSS-C interface, RS422	✓	-
	IB - Incremental, open collector NPN	-	✓
	IC - Incremental, RS422	✓	-
	IE - Incremental, open collector	✓	-
	SC - Absolute binary synchro-serial interface (SSI), RS422	✓	-
	SI - Absolute binary synchro-serial (SSI) + Incremental, RS422	✓	-
	Vx - Linear voltage output	✓	-

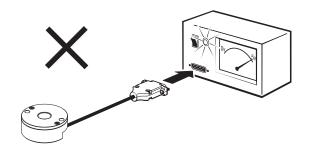
Storage and handling

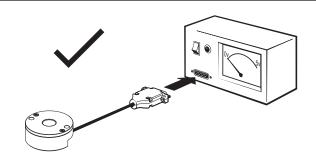
Operating and storage temperature



-40 °C to +125 °C -40 °C to +105 °C (with connector)

Humidity


Up to 70 % non-condensing

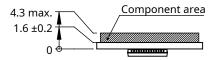


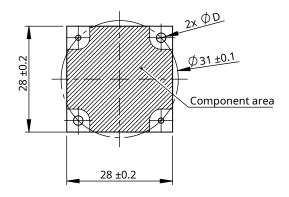
Readhead is ESD sensitive - handle with care.

Do not touch electronic circuit, wires or sensor area without proper ESD protection or outside of ESD controlled environment.

Packaging

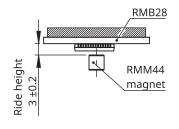
Less than 20 products are packed individually in an antistatic box. If the order quantity is 20 systems and larger, the parts are packed in antistatic plastic trays. Magnets and readheads are packed separately.

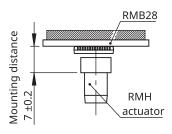

Dimensions and installation drawings

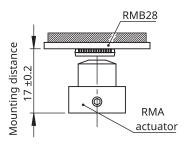

Dimensions and tolerances are in mm. Dimensions without tolerance values are in accordance with ISO 2768-m.

RMB28

Dimensions

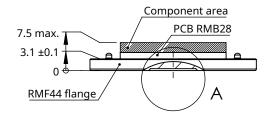


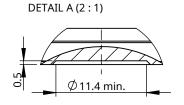

Output type	Hole diameter (D)
AC	2.5 ^{±0.1}
DC	2.5 ^{±0.1}
IC	2.5 ^{±0.1}
IB	3.5 ^{±0.1}
IE	3.5 ^{±0.1}
SC	2.5 ^{±0.1}
SI	2.5 ^{±0.1}
Vx	3.5 ^{±0.1}



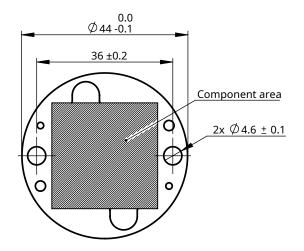
Clockwise (CW) rotation of magnet

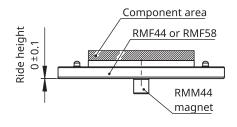
Installation drawing

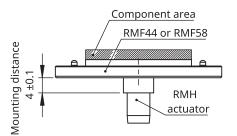


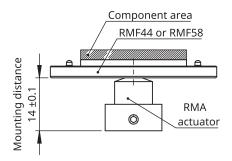


RMF44

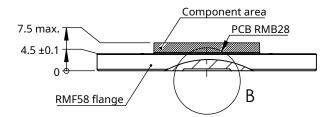

Dimensions

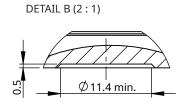


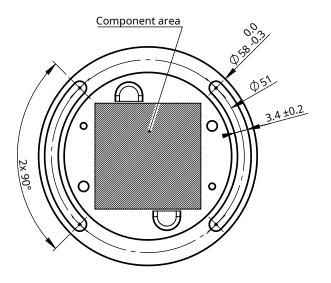



Clockwise (CW) rotation of magnet

Installation drawing






Dimensions

Clockwise (CW) rotation of magnet

Installation tolerances

Installation tolerances for RMB28 / RMF44 / RMF58

Mounting distance See installation drawings of encoder assemblies

on **page 5 and 6.**

1

Radial displacement (concentricity) 0.2 mm

Perpendicularity 0.2°

- Encoder - Magnet

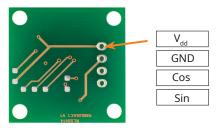
Technical specifications

Mechanical data

Mass	Encoder unit <20 g Magnetic actuator <2 g	
Magnet material	Sm2Co17 with Ni-Cu-Ni protective layer	
Actuator material	RMH: Aluminium	
	RMA: Stainless steel	

Environmental data

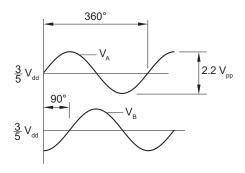
EMC compliance	EN 61326	
Shock	100 G (6 ms, standard EN 60068-2-27:2009)	
Vibration	40 G (55 Hz–2000 Hz, standard EN 60068-2-6:2008)	
Temperature drift error	0.004°/°C	



Output types

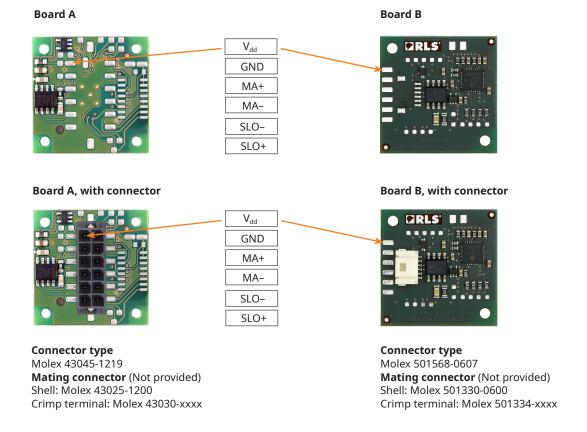
AC – Analogue sinusoidal outputs

2 channels V_A V_B sinusoids (90° phase shifted, single ended)


Connections

Specifications

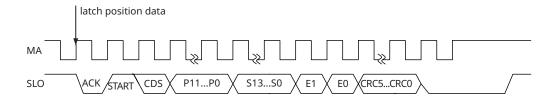
$V_{dd} = 5 V \pm 5 \%$
One sine/cosine wave per revolution
13 mA
Signal amplitude: 1.1 V ±0.2 V Signal offset: $\frac{3}{5}$ V _{dd} ±5 mV
60,000 rpm
-40 °C to +125 °C


Timing diagram

 $\rm V_{A}$ leads $\rm V_{B}$ by 90° for clockwise rotation of magnetic actuator.

DC - Absolute encoder with BiSS-C interface

Connections

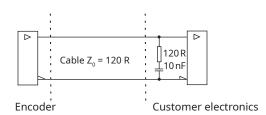

Specifications

Output code	Natural binary
Power supply	$V_{dd} = 5 V \pm 5 \%$
Current consumption	Board A: 35 mA Board B: 65 mA
Clock input	MA (RS422)
Data output	SLO (RS422)
Accuracy	Typ. ±0.5°
Hysteresis	0.18°
Resolution	Board A: 320, 400, 500, 512, 800, 1000, 1024, 1600, 2000, 2048, 4096, 8192 positions per revolution Board B: 360, 3600, 4000, 8000, 10000, 16000, 16384 positions per revolution*
Revolution counter	12 bit (4,096 revolutions)
Maximum speed	30,000 rpm
Operating temperature	–40 °C to +125 °C –40 °C to +105 °C (with connector)
Max MA frequency	8 MHz

^{*} For other resolutions contact RLS.

Timing diagram - BiSS C

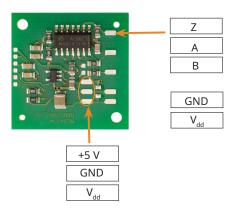
Data	Length	Description
P11 – P0	0 or 12 bit	Revolution counter value when enabled (see Part numbering/resolution)*
S13 – S0	7 to 14 bit	Position inside the revolution (length depends on the resolution)
E1 – E0	2 bit	Error data
CRC5 – CRC0	6 bit	Cyclic redundancy check data; polynomial 0x43; inverted bit output

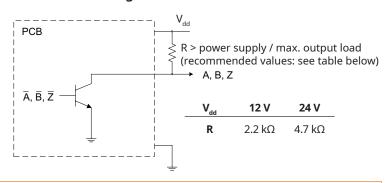

^{*} The revolution counter counts the number of mechanical revolutions of the shaft or magnet of the encoder. Counting is possible only when the encoder is powered. When the encoder is powered off, the revolution counter is reset to 0.

Error	E0	E1
No error	1	1
Amplitude error	0	1
Too high velocity	1	0
Undervoltage; Configuration; System error	0	0

For more information on BiSS C protocol please visit www.biss-interface.com.

Recommended signal termination

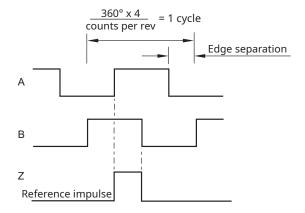

For data output lines only


IB - Incremental, open collector NPN

Square wave output

Connections

Recommended signal termination



RMB28IB / RMF44IB boards need 2 power supplies; pad V_{dd} and pad +5 V. Pads $V_{dd'}$ GND and +5 V have been provided to allow easy connection to a 3 terminal voltage regulator to generate 5 V from $V_{dd'}$.

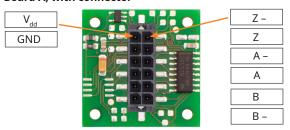
Specifications

Power supply	V _{dd} = 8 V to 26 V
Current consumption	50 mA
Output signals	A, B, Z
Maximum output load	20 mA
Accuracy	Typ. ±0.5°
Hysteresis	0.18°
Resolution	80 to 2,048 pulses per revolution (320, 400, 500, 512, 800, 1000, 1024, 1600, 2000, 2048, 4096, 8192 counts per revolution)
Maximum speed	30,000 rpm
Operating temperature	-40 °C to +125 °C

Timing diagram

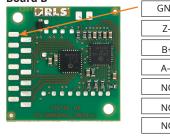
 $\ensuremath{\mathsf{B}}$ leads $\ensuremath{\mathsf{A}}$ for clockwise rotation of magnetic actuator.

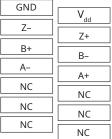
IC - Incremental, RS422


Square wave differential line driver to RS422

Connections

Board A




Board A, with connector

Connector type Molex 43045-1219 Mating connector (Not provided) Shell: Molex 43025-1200 Crimp terminal: Molex 43030-xxxx

Board B

Board B, with connector

Connector type
Molex 501568-1107
Mating connector (Not provided)
Shell: Molex 501330-1100
Crimp terminal: Molex 501334-xxxx

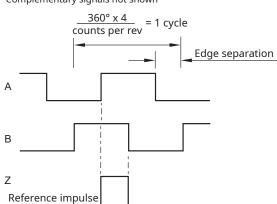
GND V_{dd}

Z-
Z+

D+
B-

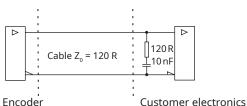
A+ NC

NC NC


Specifications

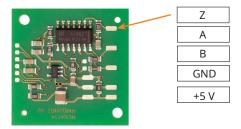
<u>'</u>		
Power supply	$V_{dd} = 5 V \pm 5 \%$	
Current consumption	Board A: 35 mA Board B: 65 mA	
Output signals	A, B, Z, A-, B-, Z- (RS422)	
Accuracy	Typ. ±0.5°	
Hysteresis	0.18°	
Resolution	Board A: 320, 400, 500, 512, 800, 1000, 1024, 1600, 2000, 2048, 4096, 8192 counts per revolution Board B: 360, 3600, 4000, 8000, 10000, 16000, 16384 counts per revolution*	
Maximum speed	30,000 rpm	
Operating temperature	−40 °C to +125 °C −40 °C to +105 °C (with connector)	

^{*} For other resolutions contact RLS.


Timing diagram

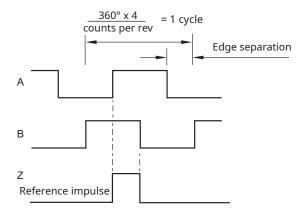
Complementary signals not shown

B leads A for clockwise rotation of magnetic actuator.


Recommended signal termination

IE - Incremental, open collector, NPN

Low cost alternative for ball bearing encoders


Connections

Specifications


Power supply	V _{dd} = 5 V ±5 %			
Current consumption	35 mA (not loaded)			
Output signals	A, B, Z			
Maximum output load	20 mA			
Accuracy	Typ. ±0.5°			
Hysteresis	0.18°			
Resolution	320, 400, 500, 512, 800, 1000, 1024, 1600, 2000, 2048, 4096, 8192 counts per revolution			
Maximum speed	30,000 rpm			
Operating temperature	-40 °C to +125 °C			

Timing diagram

B leads A for clockwise rotation of magnetic actuator.

Recommended signal termination

SC - Absolute binary synchro-serial (SSI), RS422

Serial encoded absolute position measurement

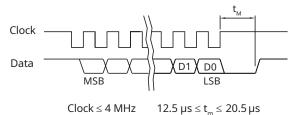
Connections Board A

Board B

Board A, with connector

Board B, with connector

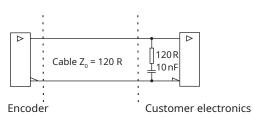
Connector type
Molex 501568-0607
Mating connector (Not provided)
Shell: Molex 501330-0600
Crimp terminal: Molex 501334-xxxx


Connector type Molex 43045-1219 Mating connector (Not provided) Shell: Molex 43025-1200 Crimp terminal: Molex 43030-xxxx

Specifications

Output code	Natural binary
Power supply	$V_{dd} = 5 V \pm 5 \%$
Current consumption	Board A: 35 mA Board B: 65 mA
Data output	Serial data (RS422)
Data input	Clock (RS422)
Accuracy	Typ. ±0.5°
Hysteresis	0.18°
Resolution	Board A: 320, 400, 500, 512, 800, 1000, 1024, 1600, 2000, 2048, 4096, 8192 positions per revolution Board B: 360, 3600, 4000, 8000, 10000, 16000, 16384 positions per revolution*
Maximum speed	30,000 rpm
Operating temperature	-40 °C to +125 °C -40 °C to +105 °C (with connector)

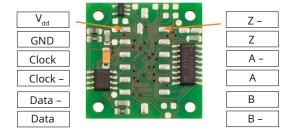
^{*} For other resolutions **contact RLS**.


Timing diagram

Position increases for clockwise rotation of magnetic actuator.

Recommended signal termination

For data output lines only


A RENISHAW. associate company

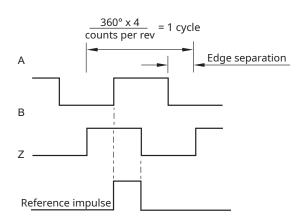
SI - Absolute binary synchro-serial (SSI) + Incremental, RS422

Complex feedback device for absolute position at start up as well as during operation + incremental outputs. Both the incremental and the SSI output always have the same fixed resolution.

Connections

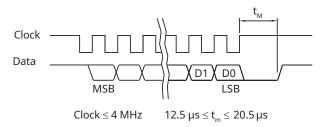
Without connector

With connector


Connector type Molex 43045-1219 Mating connector (Not provided) Shell: Molex 43025-1200 Crimp terminal: 43030-xxxx

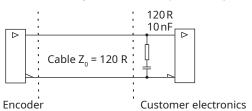
Specifications

<u> </u>				
Output code	Natural binary			
Power supply	$V_{dd} = 5 V \pm 5 \%$			
Current consumption	Max. 35 mA			
Incremental outputs	A, B, Z, A-, B-, Z- (RS422)			
Data output	Serial data (RS422)			
Data input	Clock (RS422)			
Accuracy	Typ. ±0.5°			
Hysteresis	0.18°			
Resolution	320, 400, 500, 512, 800, 1000, 1024, 1600, 2000, 2048, 4096, 8192 counts per revolution			
Maximum speed	30,000 rpm			
Operating temperature	–40 °C to +125 °C –40 °C to +105 °C (with connector)			


Timing diagram - Incremental

Complementary signals not shown

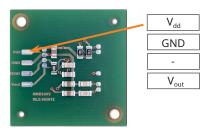
B leads A for clockwise rotation of magnetic actuator.


Timing diagram - SSI

Position increases for clockwise rotation of magnetic actuator.

Recommended signal termination

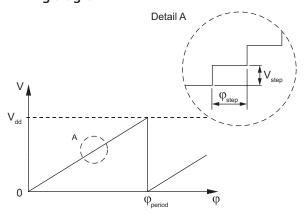
For incremental signals + SSI data output lines only



Vx - Linear voltage output

Alternative for potentiometers

Connections


Specifications

Power supply	$V_{dd} = 5 V \pm 5 \%$			
Current consumption	Typ. 26 mA			
Output voltage	0 V to V _{dd}			
Output loading	Max. 2 mA			
Nonlinearity	1 %			
Resolution of DAC	10 bit			
Maximum speed	30,000 rpm			
Operating temperature	-40 °C to +125 °C			

The digital relative angular position information is converted into linear voltage with a built-in 10 bit D/A converter. The linear output voltage swing ranges from 0 V and V_{dd} (5 V). The number of periods within one revolution (N_{period}) can be 1, 2, 4 or 8, representing one full swing over an angle (ϕ_{period}) of 360°, 180°, 90° or 45° respectively. The signal is made up of steps which represent the angular movement needed to register a change in the position (ϕ_{step}) and the resulting change in the output voltage (V_{step}). The number of steps in one period (N_{step}) is given in the table below.

For clockwise rotation of the magnetic actuator, the output voltage increases. For counterclockwise rotation, the output voltage decreases.

Timing diagram

Output type and electrical variant

Rotation / ϕ_{period}	360°	180°	90°	45°
Clockwise	VA	VB	VC	VD
Counterclockwise	VE	VF	VG	VH

ϕ_{period}	N _{period}	N_{step}	ϕ_{step}
360°	1	1,024	0.35°
180°	2	1,024	0.18°
90°	4	1,024	0.09°
45°	8	512	0.09°

$$\phi_{\text{step}} = \frac{\phi_{\text{period}}}{N_{\text{step}}}$$
 $V_{\text{step}} = \frac{V_{\text{dd}}}{N_{\text{step}}}$

 $\phi_{\text{period}}\,$ = $\,$ Angle covered $\,$ in one period (one sawtooth) $\,$

V_{period} = Output voltage range for one period

 $\phi_{\text{step}}^{\text{period}}$ = Step angle (angular movement needed to register a

change in the position)

V_{step} = Output voltage range for one step N_{period} = Number of periods in one revolution N_{step} = Number of steps in one period

Part numbering

RMF44 IC 08B Α 10 Series RMB28 - RMB28 encoder module RMF44 - RMB28 encoder module on 44 mm diameter metal flange RMF58 - RMB28 encoder module on 58 mm diameter metal flange **Output type** AC - Analogue sinusoidal, 5 V IE - Incremental, open collector, NPN, 5 V **DC** - Absolute natural binary BiSS, RS422, 5 V **SC** - Absolute binary synchro-serial (SSI), RS422, 5 V IB - Incremental, open collector, NPN, 24 V SI - SSI + Incremental, RS422, 5 V IC - Incremental, RS422, 5 V Vx - Linear voltage: Linear voltage output 0 - 5 V, supply 5 V DC 360° 90° CW VA VΒ VC VD CCW VG ٧H Resolution For AC: 015 - One sine/cosine wave per revolution For IA, IB, IE and SI (counts/positions per revolution):

Decimal

2D0 - 2000	D80 - 800	D32 - 320	13B - 8192	10B - 1024	07B - 128
1D6 - 1600	D50 - 500		12B - 4096	09B - 512	
1D0 - 1000	D40 - 400		11B - 2048	08B - 256	

For IC, SC and DC (counts/positions per revolution):

	Decimal				Binary		
16D - 16000	4D0 - 4000	1D6 - 1600	D50 - 500	D32 - 320	14B - 16384	11B - 2048	08B - 256
10D - 10000	3D6 - 3600	1D0 - 1000	D40 - 400		13B - 8192	10B - 1024	
8D0 - 8000	2D0 - 2000	D80 - 800	D36 - 360		12B - 4096	09B - 512	

Binary

For **DC** with enabled 12 bit revolution counter:

	billary				
14M - 16384	11M - 2048	08M - 256			
13M - 8192	10M - 1024	07M - 128			
12M - 4096	09M - 512				

For other resolutions contact RLS.

For Vx:

10B - 1,024 counts/positions per revolution

- **S** Square (for RMB28)
- A Standard 44 mm or 58 mm flange (for RMF44 and RMF58)

Special requirements

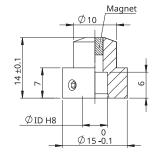
- 10 No special requirements (standard)
- 11 With Molex connector top entry, board A (for output types IC, SC, DC and SI)
- 12 With Molex connector side entry, board B (for output types IC, SC, DC)

For commutation outputs please refer to **Commutation and incremental magnetic encoder solutions.**

Not all combinations are valid. Please refer to the table of available combinations on the next page.

Table of available combinations

Series	Output type	Resolution	Shape	Special requirements
	AC	015		10
	Vx	10B		10
	IB	2D0 / 1D6 / 1D0 / D80 / D50 / D40 / D32 / 13B / 12B / 11B / 10B / 09B / 08B / 07B		10
		2D0 / 1D6 / 1D0 / D80 / D50 / D40 / D32 / 13B /		10
	IC	12B / 11B / 10B / 09B / 08B / 07B		11
		D36 / 3D6 / 4D0 / 8D0 /		10
		10D / 16D / 14B		12
	IE	2D0 / 1D6 / 1D0 / D80 / D50 / D40 / D32 / 13B / 12B / 11B / 10B / 09B / 08B / 07B		10
RMB28 / RMF44 / RMF58	RMF44 / RMF58	2D0 / 1D6 / 1D0 / D80 / D50 / D40 / D32 / 13B / 12B / 11B / 10B / 09B / 08B / 07B	S / A*	10
				11
		D36 / 3D6 / 4D0 / 8D0 /		10
		10D / 16D / 14B		12
	SI	2D0 / 1D6 / 1D0 / D80 / D50 / D40 / D32 / 13B /		10
	51	12B / 11B / 10B / 09B / 08B / 07B		11
		2D0 / 1D6 / 1D0 / D80 / D50 / D40 / D32 / 13B /		10
	DC	12B / 11B / 10B / 09B / 08B / 07B / 13M / 12M / 11M / 10M / 09M / 08M / 07M		11
		D36 / 3D6 / 4D0 / 8D0 /		10
		10D / 16D / 14B / 14M		12


^{*} S for RMB28 A for RMF44 and RMF58

For commutation outputs please refer to **Commutation and incremental magnetic encoder solutions.**

Magnetic actuator and magnet ordering information

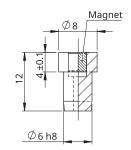
Actuator for integration onto shaft

Shaft = Ø ID h7 Fixing: Grub screw provided

* Hole diameter for nominal shaft size. See table on the right for more information on available shaft sizes.

Part numbers:

For resolutions up to 9 bit absolute (512 cpr incremental)


RMA04A2A00 – ID = Ø4 mm **RMA10A2A00** – ID = Ø10 mm **RMA05A2A00** – ID = Ø5 mm RMA19A2A00 - ID = Ø3/16" mm **RMA06A2A00** – ID = Ø6 mm RMA25A2A00 - ID = Ø1/4" mm **RMA08A2A00** – ID = Ø8 mm RMA37A2A00 - ID = Ø3/8" mm

For resolutions from 10 bit absolute (800 cpr incremental) and above

RMA04A3A00 – ID = Ø4 mm **RMA10A3A00** – ID = Ø10 mm RMA05A3A00 - ID = Ø5 mm RMA19A3A00 - ID = Ø3/16" mm **RMA06A3A00** – ID = Ø6 mm RMA25A3A00 - ID = Ø1/4" mm **RMA08A3A00** – ID = Ø8 mm RMA37A3A00 - ID = Ø3/8" mm

Actuator for integration into shaft

Part numbers:

For resolutions up to 9 bit absolute (512 cpr incremental)

RMH06A2A00

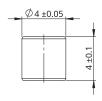
For resolutions from 10 bit absolute (800 cpr incremental) and above

RMH06A3A00

with N-pole marker

Hole = Ø6G7 Fixing: Adhesive (recommended - LOCTITE 648 or 2701)

With N-pole marker scribed to a ±5° accuracy:


For resolutions up to 9 bit absolute (512 cpr incremental)

For resolutions from 10 bit absolute (800 cpr incremental) and above

RMH06A3A02

Magnet for direct recessing in non-ferrous shafts

Fixing: Adhesive (recommended - LOCTITE 648 or 2701)

For resolutions up to 9 bit absolute (512 cpr incremental) RMM44A2A00 (individually packed) - for sample quantities only RMM44A2C00 (packed in tubes)

For resolutions from 10 bit absolute (800 cpr incremental) and

RMM44A3A00 (individually packed) - for sample quantities only RMM44A3C00 (packed in tubes)

Head office

RLS Merilna tehnika d.o.o.

Poslovna cona Žeje pri Komendi Pod vrbami 2 SI-1218 Komenda Slovenia **T** +386 1 5272100 **E** mail@rls.si

www.rls.si

Global support

Visit our website to contact your nearest sales representative.

Document issues

Issue	Date	Page	Description
1	29. 11. 2024	General	Redesign of RMB28D01
2	17. 7. 2025	10, 13, 15, 16	Pictures of boards with connectors added
		18	Special requirements amended

This product is not designed or intended for use outside the environmental limitations and operating parameters expressly stated on the product's datasheet. Products are not designed or intended for use in medical, military, aerospace, automotive or oil & gas applications or any safety-critical applications where a failure of the product could cause severe environmental or property damage, personal injury or death. Any use in such applications must be specifically agreed to by seller in writing, and is subject to such additional terms as the seller may impose in its sole discretion. Use of products in such applications is at buyer's own risk, and buyer will indemnify and hold harmless seller and its affiliates against any liability, loss, damage or expense arising from such use. Information contained in this datasheet was derived from product testing under controlled laboratory conditions and data reported thereon is subject to the stated tolerances and variations, or if none are stated, then to tolerances and variations consistent with usual trade practices and testing methods. The product's performance outside of laboratory conditions, including when one or more operating parameters is at its maximum range, may not conform to the product's datasheet. Further, information in the product's datasheet does not reflect the performance of the product in any application, end-use or operating environment buyer or its customer may put the product to. Seller and its affiliates make no recommendation, warranty or representation as to the suitability of the product for buyer's application, use, end-product, process or combination with any other product or as to any results buyer or its customer might obtain in their use of the product. Buyer should use its own knowledge, judgment, expertise and testing in selecting the product for buyer's application, end-use and/or operating environment, and should not rely on any oral or written statement, representation, or samples made by seller or its affiliates for any purpose. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH IN THE SELLER'S TERMS AND CONDITIONS OF SALE, SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED WITH RESPECT TO THE PRODUCT, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE, WHICH ARE DISCLAIMED AND EXCLUDED. All sales are subject to seller's exclusive terms and conditions of sale which, where the seller is (a) RLS Merilna tehnika d. o. o., are available at https://www.rls.si/eng/salesterms, (b) Renishaw, Inc., are available at https:// www.renishaw.com/legal/en/--42186, or (c) another person, are available on request, and in each case, are incorporated herein by reference, and are the exclusive terms of sale. No other terms and conditions apply. Buyer is not authorized to make any statements or representations that expand upon or extend the environmental limitations and operating parameters of the products, or which imply permitted usage outside of that expressly stated on the datasheet or agreed to in writing by seller.

RLS Merilna tehnika d. o. o. has made considerable effort to ensure the content of this document is correct at the date of publication but makes no warranties or representations regarding the content. RLS Merilna tehnika d. o. o. excludes liability, howsoever arising, for any inaccuracies in this document. © 2025 RLS d. o. o.