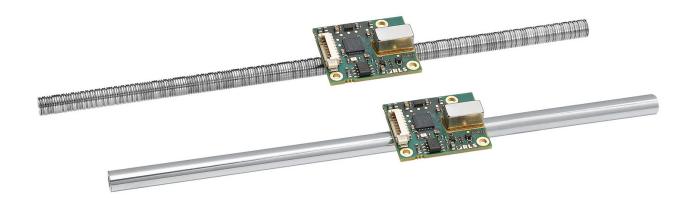


LinACE™ Flat-Board

InAxis Linear Absolute Magnetic Shaft Encoder

TRUE ABSOLUTE SYSTEM


LinACE™ flat-board is a board-level absolute linear magnetic encoder system designed for motion control applications as a position and speed control loop element.

With a readhead length of only 30 mm and a low weight, the encoder system is suitable for applications with limited space.

LinACETM flat-board provides accurate measurements with excellent resolution and repeatability. The encoders are available in asynchronous serial over RS422, SSI and BiSS C output versions and offer a range of selectable resolutions from 10 μ m to 0.5 μ m with speeds up to 5 m/s. The position of the encoder is maintained even when the shaft rotates during forward and backward motion.

ACCURACY UP TO ±10 μm

HIGH DYNAMIC CONTROL LOOPS

Features and benefits

- ► Non-contact technology for high reliability
- Absolute position at power-up
- ► Resolutions up to 0.5 μm
- Measuring lengths up to 300 mm
- ▶ Built-in self-monitoring

- Excellent resistance to stray magnetic fields
- Stable over whole temperature range
- Suitable for highly dynamic control loops
- ► Small footprint 30 × 25 × 8.5 mm

General information

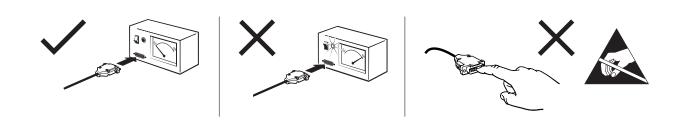
The LinACE™ flat-board encoder system consists of a board level encoder readhead and a coded solid steel shaft that serves as the measuring standard.

By replacing the main actuator shaft or one of the guide shafts with a LinACE coded, hard-chrome plated shaft, the encoder becomes part of the actuator and enables measurements in the motion axis.

The LinACE encoder has a built-in advanced self-monitoring function that continuously checks several internal parameters. Error reports, warnings and other status signals are available on all digital interfaces.

The encoder has excellent resistance to external magnetic fields and is resistant to shock and vibration. Accuracy can be as high as $\pm 10~\mu m$ with a resolution of 0.5 μm and is very stable over the entire temperature range from $-40~^{\circ}$ C to $+105~^{\circ}$ C. The repeatability of the encoder is less than the unit of resolution and the signal noise is very low with an average value of 0.5 μm and a maximum value of 1 μm . The position of the encoder is maintained even when the shaft rotates during forward and backward motion.

A custom design service for OEM integration is also available.


The maximum measuring length is 300 mm.

Storage and handling

Operating and storage temperature

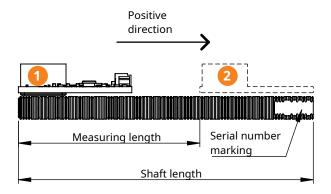
-40 °C to +105 °C (with standard cable)

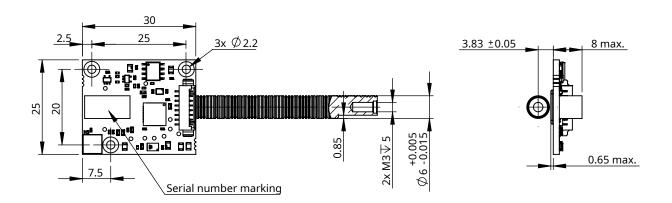
Readhead is ESD sensitive - handle with care.

Do not touch electronic circuit, wires or sensor area without proper ESD protection or outside of ESD controlled environment.

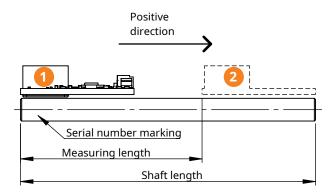
Packaging

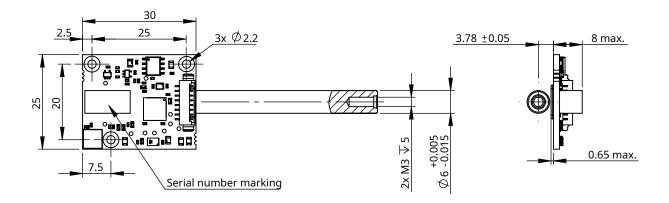
Packed individually in an antistatic bag.




Dimensions and installation drawings

Dimensions and tolerances are in mm. Dimensions without tolerance values are in accordance with ISO 2768-m.


Option A - Open grooves



- Keep the shaft and board as matched pairs. Ser. No. must be same on the shaft and readhead.
- The shaft must be installed with the alignment as shown in the drawing. Pay attention to the position of the serial numbers.
- The encoder shaft can be rotated independently of the linear travel.

Option B - Hard Crome Coating

- Keep the shaft and board as matched pairs. Ser. No. must be same on the shaft and readhead.
- The shaft must be installed with the alignment as shown in the drawing. Pay attention to the position of the serial numbers.
- $\bullet \quad \text{ The encoder shaft can be rotated independently of the linear travel.} \\$

Installation tolerances

_		

Installation tolerances (readhead to shaft)

Ride height	See dimension drawing of encoder assembly.	
	Tight ride height is recommended. Increasing the ride height	^
	exponentially increases encoder noise even if it is within	
	installation tolerances.	•
Pitch	Tilt angle <0.2°	
Yaw	Tilt angle <0.2°	
		1
Lateral offset	<0.2 mm	
		— —

Technical specifications

System data

Maximum measuring length	300 mm
Shaft diameter	6 mm
Shaft linear expansion coefficient	~11 × 10 ⁻⁶ /K
Maximum speed	5 m/s
Resolution	0.5 μm, 1 μm, 5 μm, 10 μm
System accuracy	±10 μm, ±25 μm, ±50 μm, ±100 μm
Hysteresis	Less than unit of resolution (without mechanical assembly influence)
Repeatability	Less than unit of resolution

Electrical data

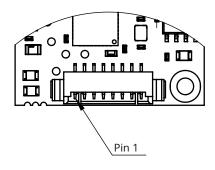
Supply voltage	4.5 V to 5.5 V – voltage on readhead	
Set-up time	5 ms (after power-up)	
Power-up time	For correct encoder functionality min. 4.5 V should be achieved in less than 10 ms after power-up.	
Current consumption	Typ. 115 mA, max. 150 mA (without output load)	
Output load	±40 mA	
Connection	8-pin low-profile connector FCI 0114830-11108LF	

Mechanical data

Material	Coded shaft option A	Carbon steel, nickel coating, code is visible
	Coded shaft option B	Carbon steel, 30 μm to 40 μm hard-chrome coating 800 HV to 1100 HV (except end surfaces and threaded holes), code is hidden
	Readhead	Assembled PCB
Mass	Shaft	22 g / 100 mm
	Readhead	7.1 g

Environmental data

Temperature	Operating and storage	-40 °C to +105 °C
Humidity		Up to 70 % non-condensing
Stray magnetic fields		Readhead: max. 100 mT. Stray magnetic fields bigger than 100 mT may result in wrong position reading. Coded shaft: insensitive to stray magnetic fields.
Small particles with high permeability (eg. steel dust)		Not permitted



Electrical connections

	Asynchronous serial RS422	SSI	BiSS C
1	5 V supply	5 V supply	5 V supply
2	0 V (GND)	0 V (GND)	0 V (GND)
3	-	-	-
4	-	-	-
5	RX command in+	Clock+	MA+
6	RX command in–	Clock-	MA-
7	TX data out+	Data+	SLO+
8	TX data out-	Data-	SLO-

The voltage difference between ground (white wire and inner shield) and encoder housing (outer shield) should not exceed 10 V_{pp} .

Pinout

8-pin low profile connector

FCI 10114830-11108LF

Counterpart mating connector

FCI 10114826-00008LF and 10114827-002LF

Readhead is ESD sensitive - handle with care.

Do not touch electronic circuit, wires or sensor area without proper ESD protection or outside of ESD controlled environment.

Communication interfaces

Asynchronous serial RS422 (UART)

Baud rate	115.2 kbps, 256 kbps, 1 Mbps
Data format	8 bits, no parity, 1 stop bit
Update rate	On demand or continuous
Resolutions	0.5 μm, 1 μm, 5 μm, 10 μm
Latency	250 μs

SSI*

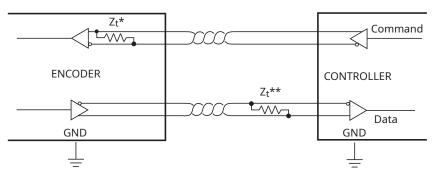
Data format	Binary
Clock frequency	50 kHz to 500 kHz (2.5 MHz**)
Update rate	4 kHz
Resolutions	0.5 μm, 1 μm, 5 μm, 10 μm
Latency	250 μs to 500 μs
Timeout (monoflop time)	20 μs

BiSS C

Maximum clock frequency	5 MHz
Maximum request rate	30 kHz
Mechanical bandwidth	2 kHz max.
Resolutions	0.5 μm, 1 μm, 5 μm, 10 μm
Latency	<10 μs
Timeout (monoflop time)	20 μs

^{*} Slave type interfaces might not be suitable for high-speed closed control loops because of the variable latency time.

^{**} With *Delay First Clock* function on the controller.



Asynchronous serial communication interface (UART) over RS422

SF output type

Encoder identification and position data are available via the request-response type of communication through the asynchronous serial link. There are two unidirectional communication channels that form a bidirectional full duplex data link. Each channel consists of a two-wire differential twisted-pair connection that complies with the RS422 signalling standard.

Electrical connection

- * The Command and Data signals are 5 V RS422 compatible differential pairs with RC termination inside the readhead.
- ** Termination at the controller is required if total cable length is longer than 5 m. The nominal impedance of the cable is 120 Ω . Recommended termination is 120 Ω or RC termination (120 Ω and 1 nF in series) if there is requirement for lower power consumption.

Output protection

An excessive output current and power dissipation caused by errors or bus conflicts are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits. In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the chip temperature becomes too high.

Communication parameters

Link speed	115.2 kbps, 256 kbps, 1 Mbps	
Character length	8 bits	
Parity	None	
Stop bits	1	
Repetition rate	4 kHz max.	
Sample rate	115.2 kbps	
Position latency	Fixed at 250 µs between the position acquisition and first start bit sent out.	

Command set

Command "v" (small character "v")

- 6b header (LinACE)
- 1b space
- 6b serial number
- 2b space
- 1b Firmware version major (1)
- 1b Firmware version minor (48)
- 1b Firmware version comm interface (3)
- 4b Firmware build number
- 1b sensor revision (32)
- 1b resolution of encoder
- 6b string with shaft code type

Command "1" (ASCII one)

Response - position and status, transmitted once

- 1 byte constant header 0xEA
- 4 bytes binary absolute position, big-endian, right aligned
- 2 bytes encoder status see table on next page
- 1 byte constant footer 0xEF

The next request should not be sent sooner than 250 µs after the end of the previous response from the readhead to allow refreshing of the position data. If request is sent sooner, data will arrive on the end of the refresh cycle.

Command "2" (ASCII two)

Response - position and status, transmitted continuously every cycle (250 μ s + time of transmission depandant on baud rate)

- 1 byte constant header 0xEA
- 4 bytes binary absolute position, big-endian, right aligned
- 2 bytes encoder status see table on next page
- 1 byte constant footer 0xEF

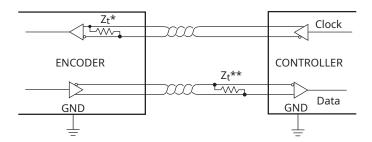
Command "0" (ASCII zero)

Stop continuous transmission

Structure of Detailed status bits (two bytes)

Encoder status (two bytes):

	b15 : b10	Reserved; always zero
General status		
	b9	Error bit. If set, the position is not valid.
	b8	Warning bit. If set, the encoder operational is close to its limits. The position is still valid, but the resolution and / or accuracy might be lower than specified.
		Error and Warning bits can be set at the same time; in this case Error bit has priority.
		The general warning or error status is more closely defined by the Detailed status bits.
Detailed status		
	b7	Warning - Signal amplitude too high. The readhead is too close to the shaft.
	b6	Warning - Signal amplitude low. The distance between the readhead and the shaft is too large.
	b5	Error - Signal lost. The readhead is too far away from the shaft.
	b4	Warning - Temperature. The readhead temperature is out of specified range.
	b3	Error - Power supply error. The readhead power supply voltage out of specified range.
	b2	Error - System error. Malfunction inside the circuitry or inconsistent calibration data is detected.
		To reset the System error bit try to cycle the power supply while the rise time is shorter than 20
		ms.
	b1	Error - Wrong code. Shaft might be inserted in the wrong direction.
10	b0	Error - Acceleration error. The position data changed too fast. Shaft might be inserted in the wrong direction.

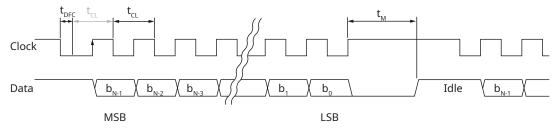


SSI - Synchronous serial interface

SC output type

The encoder position, in 21 bit natural binary code, and the encoder status are available through the SSI protocol. The position data is right aligned. LSB represents selected encoder resolution. After the position data there are two general status bits followed by the detailed status information.

Electrical connection

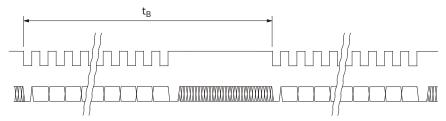


- * The Clock and Data signals are 5 V RS422 compatible differential pairs with RC termination inside the readhead.
- ** Termination at the controller is required if the total cable length exceeds 5 m. The nominal impedance of the cable is 120 Ω . A termination of 120 Ω or RC (120 Ω and 1 nF in series) is recommended if lower power consumption is required.

Output protection

An excessive output current and power dissipation caused by errors or bus conflicts are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits. In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state, if the chip temperature becomes too high.

Timing diagram

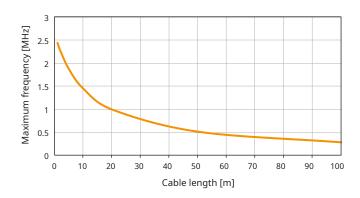


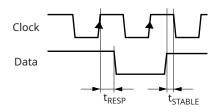
The controller requests the position and status data of the encoder by sending a pulse train to the Clock input. The Clock signal always starts from high. The first falling edge of the Clock latches the last position data available and on the first rising edge of the Clock the most significant bit (MSB) of the position is transmitted to the Data output. The Data output should then be read on the following falling or rising edge. On subsequent rising edges of the Clock signal the next bits are transmitted.

After the transmission of the last bit the Data output goes to low. When the tM time expires, the Data output goes high. The Clock signal must remain high until TB expires. If encoder is queried more frequently, same position value will be transmitted twice.

While reading the data, the half of a Clock period t_{CL} must always be less than t_{ML} . However, reading the encoder position can be terminated at any time by setting the Clock signal to high for the duration of t_{ML} .

In order for the position data to be updated, at least t_B should elapse between two successive readings. If the read request arrives earlier than t_B after the previous read, the encoder position is not updated.




The power supply must be applied at least 5 ms before the clock sequence is being sent to the encoder.

Maximum frequency

The readhead needs 170 ns to respond to incoming clocks (t_{RESP}). Change on Data signal is delayed for 170 ns after the rising edge on Clock line. An additional delay is caused by the time it takes for the signal to propagate through the cable to the readhead and back (t_{PROP}). This delay is typically 14 ns per 1 meter cable. The Data signal must be stable over at least 10 % of the length of the clock period before the value is latched. The clock frequency must be reduced with a longer cable. The total cable length from the encoder to the receiver must be considered.

Frequency derating versus cable length:

 $\mathbf{t}_{\scriptscriptstyle \mathsf{DELAY}} = \mathbf{t}_{\scriptscriptstyle \mathsf{RESP}} + \mathbf{t}_{\scriptscriptstyle \mathsf{PROP}} \times \mathsf{cable} \ \mathsf{length}$

Communication parameters

Parameter	Symbol	Min	Тур	Max
Delay first clock	$\mathbf{t}_{ exttt{DFC}}$	1 µs		10 μs
Clock period	t _{CL}	2 µs		20 μs
Clock frequency	f _{cL}	50 kHz		500 kHz (2.5 MHz *)
Timeout (Monoflop time)	t _M		20 µs	
Update time	$t_{_{B}}$	250 μs		
Readhead response delay	t _{resp}		170 ns	
Cable propagation delay	t _{PROP}		14 ns/m	
Latency		250 μs		500 μs

^{*} With *Delay First Clock* function on the controller.

Start bit and idle line value are defined by the Communication interface variant.

Communication interface variant	Line state selection	Usage
В	Start bit = 1; idle line = 1	Standard

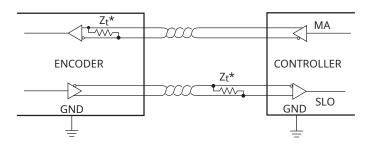
Structure of data packet

Bit	b30 : b10	b9:b8	b7 : b0	
Data length	21 bits	2 bits	8 bits	
Meaning	Encoder position	General status	Detailed status	

Structure of data packet

Encoder status b30: b10 Encoder position – Right aligned, MSB **General status** b9 Error bit. If set, the position is not valid. b8 Warning bit. If set, the encoder operational is close to its limits. The position is still valid, but the resolution and/or accuracy might be out of specification. The Error and Warning bits can be set at the same time, in this case the Error bit has priority. The general warning or error status is more closely defined by the Detailed status bits. **Detailed status b7** Warning - Signal amplitude too high. The readhead is too close to the shaft. b6 Warning - Signal amplitude low. The distance between the readhead and the shaft is too large. b5 Error - Signal lost. The readhead is too far away from the shaft. b4 Warning - Temperature. The readhead temperature is out of specified range. b3 Error - Power supply error. The readhead power supply voltage out of specified range. b2 Error - System error. Malfunction inside the circuitry or inconsistent calibration data is detected. To reset the System error bit try to cycle the power supply while the rise time is shorter than 20 ms. b1 Error - Wrong code. Shaft might be inserted in the wrong direction. b0 Error - Acceleration error. The position data changed too fast. Shaft might be inserted in the wrong direction.

BiSS C unidirectional

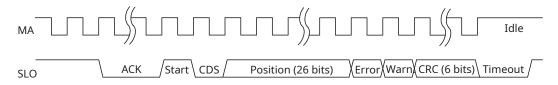

DC output type

Encoder position, in 26-bit natural binary code, and encoder status are available via BiSS C protocol. The position data is right-aligned. Position data is followed by two status bits (active low), followed by CRC (inverted).

BiSS C is implemented for point-to-point operation; multiple slaves are not supported.

Communication is unidirectional, the readhead is not user programmable, also custom parameters can not be stored into the readhead.

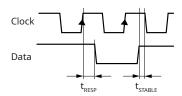
Electrical connection


Signals	
MA	Master clock. Max. clock frequency is 5 MHz.
SLO	Slave out. Data is output on rising edge on MA. Data is valid on the falling edge of MA signal.

^{*} The MA and SLO lines are 5 V RS422-compatible differential pairs. The termination resistor on the MA line is integrated in the encoder.

Output protection

Excessive output current and power dissipation caused by errors or bus conflicts are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits. In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the chip temperature becomes too high.


Timing diagram

MA is idle high. Communication is initiated with the first falling edge. The encoder responds by setting the SLO low on the second rising edge on MA. When the encoder is ready for the next request cycle, it indicates this to the master by setting SLO to high. The absolute position and the CRC data are in binary format and are sent MSB first. Multicycle data is not implemented, therefore the CDS bit is always zero. The power supply must be applied at least 5 ms before the clock sequence is being sent to the encoder.

Cable length compensation

The readhead needs 170 ns to respond to incoming clocks (t_{RESP}). The change on the Data signal is delayed by 170 ns after the rising edge on the Clock line. An additional delay is caused by the time the signal takes to propagate through the cable to the readhead and back (t_{PROP}). This delay is typically 14 ns per 1 m cable. The total cable length from the encoder to the receiver must be considered.

$$t_{\tiny DELAY}$$
 = $t_{\tiny RESP}$ + $t_{\tiny PROP}$ × cable length

The data signal must be stable before the value is latched. If the cable is longer than 1 m and has a clock frequency of more than 2.5 MHz, this delay must therefore be compensated in the receiver (controller) to which the encoder is connected.

Communication parameters

Communication interface variant in the part number defines the functionality of the encoder.

Communication interface variant	Description	Parameter	Value
	Long response	ACK length	12 bits
н	High frequency	MA frequency	Max. 5 MHz

Parameter	Symbol	Worst case	
Latency		<10 µs	
Mechanical bandwidth *		2 kHz	
Maximum request rate		30 kHz	
Timeout (Monoflop time)		20 μs	
Readhead response delay	$t_{\scriptscriptstyle{RESP}}$	170 ns	
Cable propagation delay	t _{PROP}	14 ns/m	

^{*} Bandwidth parameter is mechanical bandwidth. LinACE samples at 4 kHz therefore any mechanical changes that are appearing faster than 2 kHz are not detectable on the output (Nyquist theorem). If request for position comes faster than sampling frequency, LinACE encoder recalculates the position at the time of request based on current shaft velocity.

Structure of data packet

Data packet length is fixed to 34 bits. It consists of 26 bits of Position, 2 Status bits and 6 CRC bits (see table below).

Encode	r position	
	b33 : b8	Encoder position - Right aligned
Genera	l status	
	b7	Error bit. If set, the position is not valid.
	b6	Warning bit. If set, the encoder operational is close to its limits. The position is still valid, but the resolution and/or accuracy might be out of specification.
		The Error and Warning bits can be set at the same time, in this case the Error bit has priority. The general warning or error status is more closely defined by the Detailed status bits.
CRC (in	verted)	
	b5 : b0	Polynomial for CRC calculation of position, error and warning data is: $x6 + x1 + 1$. Represented also as 0x43. It is inverted and transmitted MSB first.

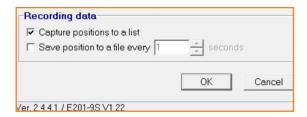
For further information regarding CRC calculation example, refer to the document CRCD01 available at **RLS Media center**.

Deatiled status

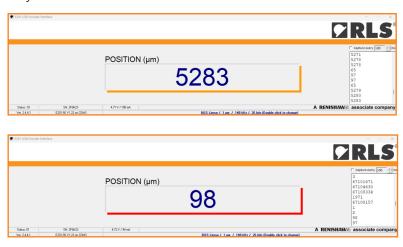
In case of problems with the encoder, detailed status bits are available that communicate the type of error.

When the encoder is in the error state, the red LED is on and the error bit is active. Position information is replaced by detailed status information (red line is visible, which represents error state). For easy reading of the BiSS encoder, the E201-9S interface can be used and the Demo software set to a resolution of 1 um.

The software settings must be as follows:



In the event of an active error on the encoder, the software display is as follows (red line is visible, which represents error state):



If the error only occurs for a very short time, the data storage function can be enabled in the software:

Only the values where error was active should be observed.

The numbers displayed by the software can be converted to the individual status bits using a Windows Calculator to convert from Decimal to Binary value:

The binary value is then used to look-up the active warning and error bits in the table Detailed status.

Detailed status

Warning - Signal amplitude too high. The readhead is too close to the shaft.
Warning - Signal amplitude low. The distance between the readhead and the shaft is too large.
Error - Signal lost. The readhead is too far away from the shaft.
Warning - Temperature. The readhead temperature is out of specified range.
Error - Power supply error. The readhead power supply voltage out of specified range.
Error - System error. Malfunction inside the circuitry or inconsistent calibration data is detected. To reset the System error bit try to cycle the power supply while the rise time is shorter than 20 ms.
Error - Wrong code. Shaft might be inserted in the wrong direction.
Error - Acceleration error. The position data changed too fast. Shaft might be inserted in the wrong direction.

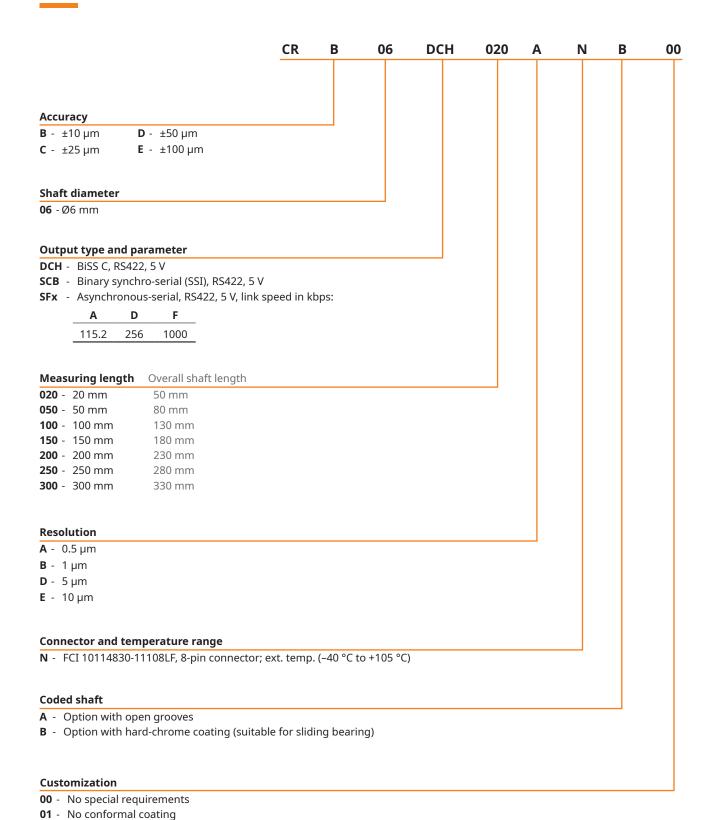
Warning bits can be observed only if they are active together with one of the error bits. In case only warning is active, encoder will output valid position information, not status bits.

Example:

Decimal value: 97Binary value: 0110 0001Active bits: b6, b5, b0

• Active errors: Signal low, Signal lost, Acceleration error.

• Solution: Move readhead closer to the shaft.


Alternatively, common values can be directly interpreted using the table below.

Position reading	Detailed status	Cause and solution
01	Acceleration error	Indicates that Corrupted pattern error was active in the past, causing position value to jump.
02	Corrupted pattern	Adjust mechanical alignment and check for external magnetic field.
65	Signal low & Acceleration error	Adjust readhead closer to the shaft.
66	Signal low & Corrupted pattern	Adjust readhead closer to the shaft and check for external magnetic field.
67	Signal low & Corrupted pattern & Acceleration error	Adjust readhead closer to the shaft and check for external magnetic field.
97	Signal lost & Acceleration error	Readhead is too far away from the shaft.
98	Signal lost & Corrupted pattern	Readhead is too far away from the shaft.

For more information regarding BiSS protocol see **www.biss-interface.com**.

Part numbering

Not all part number combinations are valid. Please refer to the Table of available combinations on the next page.

Table of available combinations

Series	Accuracy	Shaft diameter	Output type	Output type parameter	Measuring length	Resolution	Connector and temp. range	Coded shaft	Customiza- tion
			DC	Н					
	В		SC	В		A/B			
			SF	A/D/F					
			DC	Н	020 / 050 / 100 / 150				
CR	С	06	SC	В	/ 200 / 250 / 300	A\B\D	N	A/B	00 / 01
			SF	A/D/F					
			DC	Н					
	D\E		SC	В		A\B\D\E			
			SF	A/D/F					

Accessories

Cable assembly, 1 m ACC015 ACC049

Cable assembly, 1 m ACC016 ACC065

Cable assembly, 3 m ACC061 ACC070

USB interface (for SSI and BiSS communication interface) **E201-9S**

LinACE Serial Demo software will work with LinACE with Asynchronous Serial Interface using FTDI (FTDI USB-RS44-WE-1800_BT)

Head office

RLS Merilna tehnika d. o. o.

Poslovna cona Žeje pri Komendi Pod vrbami 2 SI-1218 Komenda Slovenia

T +386 1 5272100

E mail@rls.si

www.rls.si

Global support

Visit our website to contact your nearest sales representative.

Issue	Date	Page	Description
01	6. 6. 2023	-	New document
02	8. 8. 2023	16	Table amended
03	10. 9. 2024	3	Dimensions drawing amended
04	14. 4. 2025	11	SSI timing diagram amended
		14-18	BiSS Structure of data packet amended
		20	Accesories amended

This product is not designed or intended for use outside the environmental limitations and operating parameters expressly stated on the product's datasheet. Products are not designed or intended for use in medical, military, aerospace, automotive or oil & gas applications or any safety-critical applications where a failure of the product could cause severe environmental or property damage, personal injury or death. Any use in such applications must be specifically agreed to by seller in writing, and is subject to such additional terms as the seller may impose in its sole discretion. Use of products in such applications is at buyer's own risk, and buyer will indemnify and hold harmless seller and its affiliates against any liability, loss, damage or expense arising from such use. Information contained in this datasheet was derived from product testing under controlled laboratory conditions and data reported thereon is subject to the stated tolerances and variations, or if none are stated, then to tolerances and variations consistent with usual trade practices and testing methods. The product's performance outside of laboratory conditions, including when one or more operating parameters is at its maximum range, may not conform to the product's datasheet. Further, information in the product's datasheet does not reflect the performance of the product in any application, end-use or operating environment buyer or its customer may put the product to. Seller and its affiliates make no recommendation, warranty or representation as to the suitability of the product for buyer's application, use, end-product, process or combination with any other product or as to any results buyer or its customer might obtain in their use of the product. Buyer should use its own knowledge, judgment, expertise and testing in selecting the product for buyer's application, end-use and/or operating environment, and should not rely on any oral or written statement, representation, or samples made by seller or its affiliates for any purpose. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH IN THE SELLER'S TERMS AND CONDITIONS OF SALE, SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED WITH RESPECT TO THE PRODUCT, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE, WHICH ARE DISCLAIMED AND EXCLUDED. All sales are subject to seller's exclusive terms and conditions of sale which, where the seller is (a) RLS Merilna tehnika d. o. o., are available at https://www.rls.si/eng/salesterms, (b) Renishaw, Inc., are available at https:// www.renishaw.com/legal/en/--42186, or (c) another person, are available on request, and in each case, are incorporated herein by reference, and are the exclusive terms of sale. No other terms and conditions apply. Buyer is not authorized to make any statements or representations that expand upon or extend the environmental limitations and operating parameters of the products, or which imply permitted usage outside of that expressly stated on the datasheet or agreed to in writing by seller.

RLS Merilna tehnika d. o. o. has made considerable effort to ensure the content of this document is correct at the date of publication but makes no warranties or representations regarding the content. RLS Merilna tehnika d. o. o. excludes liability, howsoever arising, for any inaccuracies in this document. © 2025 RLS d. o. o.