

LM15

Incremental Magnetic Encoder

ROBUST

The LM15 is a high speed non-contact magnetic encoder designed to detect linear motion in harsh environments. It features a compact readhead that rides at up to 3.0 mm from the self-adhesive magnetic scale or ring.

Simple to install, the LM15 features a set-up LED and wide installation tolerances. The encoder is available with digital or analogue output variants and offers a range of customer selectable resolutions from 0.61 μm to 625 μm .

Features and benefits

- ► Customer selectable resolutions
- ► High speed operation
- Excellent dirt immunity to IP68
- Linear position sensing with large ride height
- Non-contact and wear-free measuring principle
- ► CE compliant, including RoHS
- Highly resistant to shock, vibration and pressure

General information

Engineered for extreme service, the solid-state LM15 linear encoders operate from –10 °C to +80 °C, have water-proof sealing to IP68 and are highly resistant to shock, vibration and pressure. The robust magnetic scale is also resistant to a range of chemicals commonly found in industry. The non-contact, frictionless design eliminates wear and reduces hysteresis.

Choose your LM15 system

The robust LM15 readhead is compatible with the RLS MS15 incremental scale. You can choose the length of the MS15 scale up to 150 m.

LM15 + magnetic scale

More about the MS magnetic scales can be found in the MSD01 at **RLS Media center.**

Encoder variants

LM15

LM15 readhead comes with analogue, incremental, RS422, Push-pull or Open collector outputs.

LM15 + cable with flexible stainless-steel conduit

LM15 with cable with flexible stainless-steel conduit which is excellent for harsh environments. It comes with standard LM15 outputs.

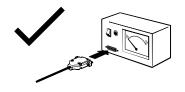
Storage and handling

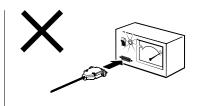
All data given below refer to the readhead only. Complete systems with magnetic scale may have other limitations. For more information, see the MSD01 data sheet at **RLS Media center**.

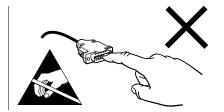
Storage temperature

-40 °C to +85 °C

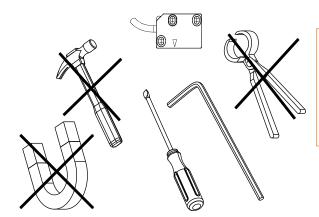
Operating temperature




-10 °C to +80 °C

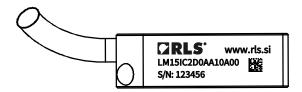

IP protection

IP68



Readhead is ESD sensitive - handle with care.

Do not touch electronic circuit, wires or sensor area without proper ESD protection or outside of ESD controlled environment.

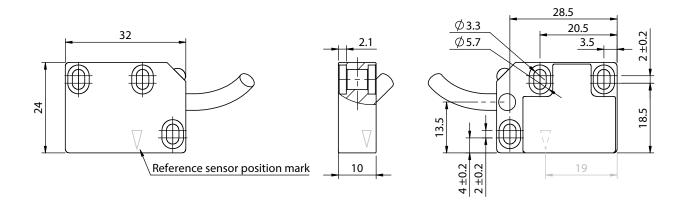


This encoder system is a high performance metrology product and must be handled carefully. The use of industrial tools during installation or exposure to strong magnets such as a magnetic base is not recommended as it carries the risk of damaging parts of the system which as a result might not perform in accordance with specifications.

Packaging

Each readhead is packed individually in antistatic bag, according to ESD protection measures.

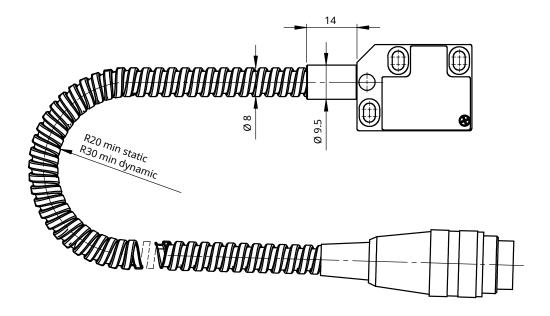
Labeling



Label on the readhead contains: full PN, 6 digits long serial number and 2D code containing the serial number.

Dimensions

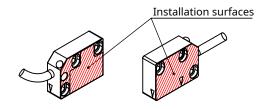
Dimensions and tolerances are in mm. Dimensions without tolerance values are in accordance with ISO 2768-m.

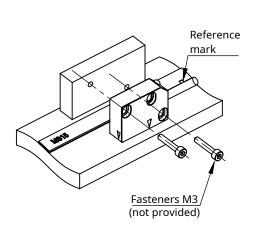

3D model available for download at **RLS Media center.**

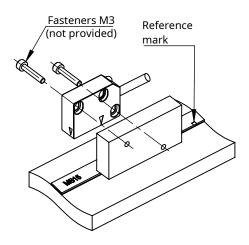
General tolerances for linear dimensions according to ISO 2768 m

Tolerance class	up to 6	6-30	30-120
m (medium)	±0.1	±0.2	±0.3

LM15 readhead with cable with stainless-steel protection tube




Max. length of cable with flexible stainless-steel conduit tube is 10 m.

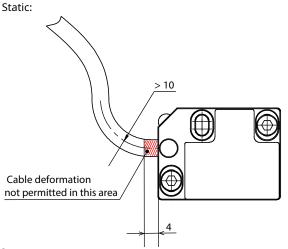

Installation instructions

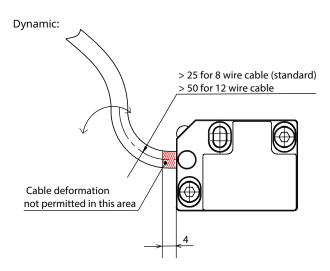
The readhead LED must be green at all measuring length positions. Otherwise, the installation is not performed correctly. The 0.1 mm to 1.0 mm thick plastic spacer (shim) can be used to facilitate installation. For optimal installation, the recommended thickness of the shim is 0.3 mm. After mounting the magnetic scale, place the plastic shim and the readhead on the magnetic scale. Make sure that the readhead, shim and magnetic scale are in full contact.

Improper mounting of the magnetic scale and readhead can impair the function of the magnetic encoder system and lead to total failure.

Images are for illustration purposes only. Valid for all versions.

Position of installation holes


Recommended use of M3 fasteners with washers. For more information, see <u>Table of recommended fastener tightening</u> <u>torques</u> at <u>RLS Media center</u>.


- The magnetic encoder system must be installed and mounted in strict compliance with the dimensions and tolerances given on **page 4**. All permissible distance and angle tolerances must be strictly complied according to the mounting instructions found at MSD01, MR01D01 or MR02D02 data sheet at **RLS Media center**.
- It is important that the space between the readhead and the magnetic scale is maintained over the entire measuring range.
- The magnetic encoder system must be used in accordance with the specified degree of protection. The following
 factors must be taken into account: IP protection class, operating temperature, external magnetic field, humidity level,
 mechanical load and EMC compatibility.
- The magnetic encoder system is sensitive to the external magnetic fields. The magnitude of the influence on the magnetic encoder system depends on the magnitude and direction of the external magnetic field. In particular, the rapidly changing stray magnetic fields affect the system and can alter its function. Magnetic field strength within 1 mT reduces the accuracy of the system. Field strengths greater than 1 mT will cause the system to malfunction and as a result the readhead will report an incorrect position with the red color LED. Magnetic field strengths greater than 25 mT will cause irreversible damage to the magnetic scale and will have to be replaced.

Cable installation

Dimensions and tolerances are in mm. Dimensions without tolerance values are in accordance with ISO 2768-m.

Technical specifications

System data

Pole length	5 mm	
Maximum measuring length	50 m (up to 150 m per request)	
System accuracy	±100 μm/m	
	Refer to MSD01 available at RLS Media center.	
Hysteresis	< 12.5 µm up to 1 mm ride height	
Repeatability	< 2.5 µm at 25 °C (up to 3 mm ride height)	
Reference mark	Unique / Periodic / DCRM (Information about distance coded reference mark can	
	be found in the MSD01 at RLS Media center.)	
Resolution	Max. 13 bit (~0.61 μm)	
	For details refer to the Table of available resolutions .	
Maximum speed	Refer to MSD01 available at RLS Media center.	

Electrical data

For electrical data see specific output type on pages 12 to 15.

Mechanical data

Mass	23 g
Material	Die-cast, Zamak-5

Environmental data

Temperature Operating		–10 °C to +80 °C (–20 °C to +85 °C if cable under non-dynamic conditions)
	Storage	-40 °C to +85 °C
Environmental se	aling	IP68 (according to IEC 60529)*
EMC Immunity		IEC 61000-6-2
EMC Emission		IEC 61000-6-4
Vibrations (55 Hz	to 2000 Hz)	300 m/s ² (IEC 60068-2-6)
Shocks (6 ms)		300 m/s ² (IEC 60068-2-27)
External magneti	c field during operation	1 mT

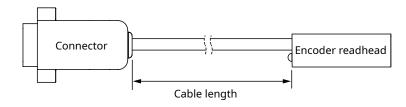
^{*} Limited by the connector.

Cable

Туре	PUR high flexible cable, drag-chain comp	PUR high flexible cable, drag-chain compatible, double-shielded		
Number of wires 8		12*		
Outer diameter	4.2 mm ±0.2 mm	4.5 mm ±0.2 mm		
Jacket material	Extruded polyurethane (PUR)			
White wire	$0.14~\text{mm}^2$, $26~\text{AWG}$, $0.13~\Omega/\text{m}$	- 0.00		
Other wires	$0.05~\text{mm}^2$, $30~\text{AWG}$, $0.35~\Omega/\text{m}$	[—] 0.08 mm², 28 AWG, 0.23 Ω/m		
Durability	20 million cycles at 25 mm bend radius	20 million cycles at 50 mm bend radius		
Weight	34 g/m nominal	38 g/m nominal		
Bend radius (internal radius)	Dynamic: 25 mm, static: 10 mm	Dynamic: 50 mm, static: 10 mm		
Dynamic torsion	Not allowed**			

^{*} Applied only for option with additional alarm output (for IA, IC; not available for PRG option).

Cable tolerances


LM15 with cable

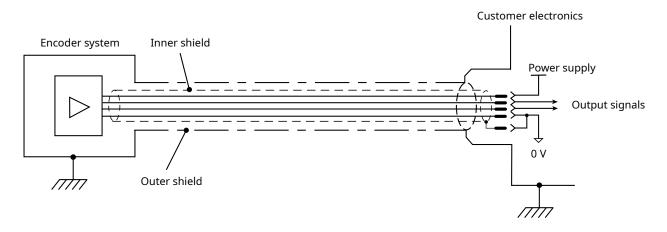
Cable length* [m] Tolerance [mm] ≤ 5 +50/-20 $> 5 \leq 10$ +70/-30 $> 10 \leq 30$ +100/-40

LM15 with cable with stainless-steel protection tube

Cable length* [m]	Tolerance [mm]
≤ 5	+70/-30
> 5 ≤ 10	+100/-40

^{*} Cable length without connector. See image below.

^{**} Cable is not torsion specified. A continuous torsion of the cable in a dynamic application could result in malfunctioning of the encoder system.


Electrical connections

			9 pin D type plug (<u>option A</u>)	15 pin D type plug (<u>option D</u>)	15 pin HD type plug (option H)	15 pin D type plug (<u>option L</u>)	9 pin D type plug (<u>option P</u>)	7 pin DIN EN60130-9 plug (<u>option U</u>)
Function	Signal	Colour (<u>option F</u>)		\$		(1		(3 (4) (2 (7) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)
B	Vdd	Brown	5	7	7	4	5	5
Power	GND	White	9	2	2	12	1	1
	A/V ₁	Green	4	14	14	9	2	3
Incremental	A- / V ₁ -	Yellow	8	6	6	1	6	-
/ analogue signals	B/V ₂	Blue	3	13	13	10	4	4
	B- / V ₂ -	Red	7	5	5	2	8	-
Reference	Z/V _o	Pink	2	12	12	3	3	6
signals	Z- / V ₀ -	Grey	6	4	4	11	7	-
A1#	E	Violet	-	11	11	-	-	-
Alarm*	E-	Black	-	3	3	-	-	-
GL: LI	Inner	-	1	15	15	15	9	-
Shield	Outer	-	Case	Case	Case	Case	Case	Case

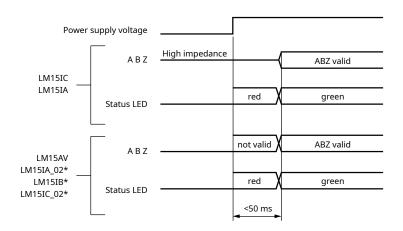
^{*} For alarm output "07" option must be ordered.

Shield connection

Figure below shows a recommended shield termination in order to ensure electromagnetic compatibility.

Housing of the encoder is galvanically connected with the housing of the connector via the cable outer shield. The encoder system must be correctly integrated to achieve EMC compliance. In particular, attention to shielding arrangements is essential.

Response time


	LM15AV	LM15IB	LM15IC_02*	LM15IA_02*	LM15IA	LM15IC
Set-up time	< 100 ms	< 100 ms	< 100 ms	< 100 ms	< 100 ms	< 100 ms
Interpolation conversion time	_	< 250 ns	< 250 ns	< 250 ns	< 250 ns	< 250 ns
Transition time	< 10 µs	< 10 µs	< 10 µs	< 10 µs	< 100 ms	< 100 ms

^{*} Shortened reaction time option.

Set-up time is the time needed for the encoder readhead to start reading the position information after power-on (see diagram 1). **Interpolation conversion time** is the time needed for the encoder readhead to convert the position information into an output signal.

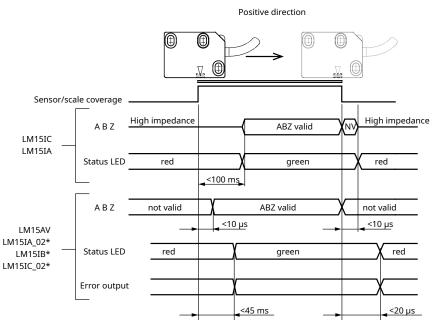

Transition time is the time it takes the encoder readhead to switch from an alarm state to a valid output signal (see diagram 2).

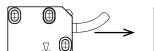
Diagram 1: Set-up time

^{*}In alarm state LED flashes red/green.

Diagram 2: Transition time

Status indicator LED

After installation of the magnetic scale (refer to MSD01 data sheet at **RLS Media center**), the readhead can be easily adjusted on the machine using the set-up LED indicator.


		Error output (special option 07)				
LED Signa	nl .	Status	IC (E)	IC (E-)	IA (E)	IA (E-)
•	Green	Good signal strength/set-up	$U_L \le 0.5 \text{ V}$	$U_H \ge 2.5 \text{ V}$	$U_L \le 1.15 \text{ V}$	$U_{_H} \ge 3.45 \text{ V}$
•	Red	 Poor signal strength. Possible reasons: Incorrect readhead orientation. Readhead installation out of tolerance. Demagnetisation of measuring scale. Insufficient power supply voltage. 	U _H ≥ 2.5 V	$U_L \le 0.5 \text{ V}$	$U_{_{\textrm{H}}} \geq 3.45 \textrm{ V}$	$U_L \le 1.15 \text{ V}$
•••	Red/green flashing	3		Not ap	plicable.	

The LED signal functions listed in the table above do not indicate non-optimal installation of the readhead, such as accuracy outside the specified range or improper operation of the reference mark.

Positive direction

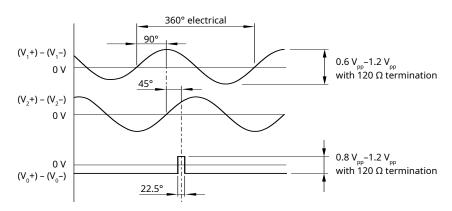
Digital output signals – A leads B (magnetic scale is stationary)

Analogue output signals (1 V_{pp}) – V_1 leads V_2

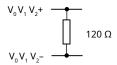
For more information, see the MSD01 data sheet at **RLS Media center**.

Output type

Analogue output signals (1 V_{pp})


LM15AV

Specifications


- Specifications			
Power supply*	4.7 V to 7 V		
(voltage on readhead)	Reverse polarity protection		
Current consumption	< 50 mA (without load)		
Voltage drop over cable**	~24 mV/m (without load)		
Output signals	V_1, V_2, V_0		
Sinusoidal period length	5 mm		
Sine / cosine signals	Amplitude	$0.6\mathrm{V}_\mathrm{pp}$ to $1.2\mathrm{V}_\mathrm{pp}$	
	(with 120 Ω termination)		
	Phase shift	90° ± 0.5°	
Reference signal	Amplitude	$0.8\mathrm{V}_\mathrm{pp}$ to $1.2\mathrm{V}_\mathrm{pp}$	
	(with 120 Ω termination)		
	Position	45°	
	Width	22.5°	
Termination	Z_0 = 120 Ω between associated output	uts	
Maximum cable length*	30 m		
·	·	· · · · · · · · · · · · · · · · · · ·	

^{*} Please consider voltage drop over cable.

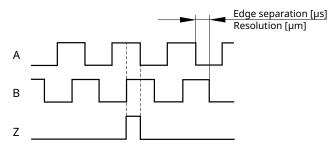
Timing diagram

Recommended signal termination

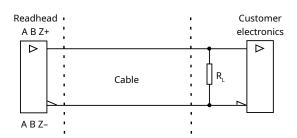
^{**} At added termination expect higher current consumption, which will result in a higher voltage drop over cable.

Incremental, Push-Pull output

LM15IA


Specifications

Power supply*	4.7 V to 30 V		
(voltage on readhead)	Without reverse polarity protection		
Current consumption	< 35 mA (without load)		
Voltage drop over cable**	~17 mV/m (without load)		
Output signals	3 square-wave signals A, B, Z and their inverted signals A–, B–, Z–		
Reference signal	1 or more square-wave pulse Z and its inverted pulse Z–		
Signal level	For 30 V: $U_{_{\rm H}} \ge 29.2 \text{V} \text{ at -I}_{_{\rm H}} = 30 \text{mA}$		
	$U_L \le 0.5 \text{ V at } I_L = 30 \text{ mA}$		
	For 5 V: $U_H \ge 4.2 \text{ V at -I}_H = 20 \text{ mA}$		
	$U_L \le 0.5 \text{ V at I}_L = 20 \text{ mA}$		
Permissible load	$I_L \le 50$ mA max. load per output		
	Outputs are protected against short circuit to 0 V and to +5 V		
Alarm	High impedance on output lines A, B, A–, B–		
	Special option 02: Alarm is not signaled by high impedance state of the A, B, A-, B-		
	signals		
	Special option 07: Alarm signal is output parallel as line driver signal		
Switching time - A, B, Z signals	For 24 V: t+ = t- < 380 ns (typ. 120 ns)		
(10 to 90 %)	For 5 V: t+ = t- < 200 ns (typ. 42 ns)		
	Measured at C _{LOAD} = 1000 pF		
Maximum cable length*	30 m		


 $[\]star$ If power supply voltage is <10 V, please consider voltage drop over cable.

Timing diagram

Complementary signals are not shown

Recommended signal termination

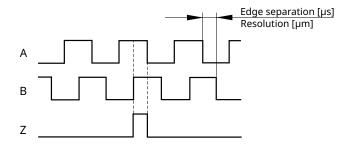
V _{supply}	R _L	I _{load}
5 V	250 Ω	20 mA
30 V	1 kΩ	30 mA

^{**} At added termination expect higher current consumption, which will result in a higher voltage drop over cable.

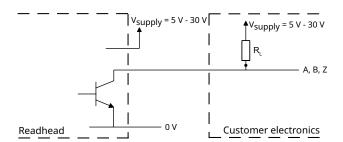
Incremental, Open Collector NPN

LM15IB

Specifications


5 V to 30 V
Without reverse polarity protection
< 35 mA (without load)
~17 mV/m (without load)
A, B, Z
1 or more square-wave pulses Z
10 mA
See table below

^{*} At added termination expect higher current consumption, which will result in a higher voltage drop over cable.


Edge separation [µs]	Maximum cable length [m]				
0.07	0.2	0.3	1	1.5	
0.12	3	2.5	1	1	
0.5	10	7	4	3	
1	10	10	9	6	
2, 4, 5, 10, 20	10	10	10	10	
Power supply voltage [V]	5	12	24	30	
R _L [Ω]*	500	1200	2400	3000	

Encoder cable length and all other cable extensions should be taken into account.

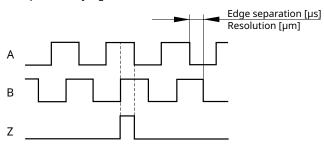
Timing diagram

Recommended signal termination

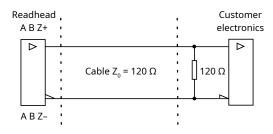
^{*} Recommended values. For higher values of $R_{\scriptscriptstyle L}$ shorter cables should be used.

Incremental, RS422

LM15IC


_			٠,		. •			
S	ne	2	ıtı	ca	tı	റ	n	c
_	ρ,	-		Cu	٠.	J		_

- p	
Power supply*	4.7 V to 7 V
(voltage on readhead)	Reverse polarity protection
Current consumption	< 35 mA (without load)
Voltage drop over cable**	~17 mV/m (without load)
Output signals	3 square-wave signals A, B, Z and their inverted signals A–, B–, Z–
Reference signal	1 or more square-wave pulse Z and its inverted pulse Z-
Signal level	Differential line driver according to EIA standard RS422:
	$U_{\rm H} \ge 2.5 \text{V}$ at $-I_{\rm H} = 20 \text{mA}$
	$U_L \le 0.5 \text{ V}$ at $I_L = 20 \text{ mA}$
Permissible load	$Z_0 \ge 100~\Omega$ between associated outputs
	$I_L \le 20$ mA max. load per output
	Capacitive load ≤ 1000 pF
	Outputs are protected against short circuit to 0 V and to +5 V
	Only one output shorted at a time
Alarm	High impedance on output lines A, B, A–, B–
	Special option 02: Alarm is not signalled by high impedance state of the A, B, /A, /B
	signals***
	Special option 07: Alarm signal is output parallel as line driver signal
Switching time – A, B, Z signals	t+, t- < 30 ns (with 1 m cable and recommended input circuit)
(10 to 90 %)	
Maximum cable length*	100 m


^{*} If power supply voltage is <10 V, please consider voltage drop over cable.

Timing diagram

Complementary signals not shown

Recommended signal termination

Programming (for IC output only)

Readheads can be ordered preset to the required resolution or supplied so they can be programmed on the machine to the selected resolution. This programming is done by connecting the readhead to a computer via a programming interface **UPRG01**. The readhead must be ordered with the PRG option to use this function. For more information on the programming function of the LM15 readhead, see **UPRG01 Programming interface website**.

^{**} At added termination expect higher current consumption, which will result in a higher voltage drop over cable.

^{***} See diagrams 1 and 2 on page 10

Part numbering

		LM1	5 IC	D20	С	Α	10	F	00
Output type									
AV - Analogue voltage	1 V _{pp}								
IA - Incremental Push-									
IB - Incremental, Oper	Collector NPN								
IC - Incremental, RS42	2								
Interpolation factor									
AV : 000 - N/A									
IA, IB and IC:									
13B - 8192 (~0.61 μm)		' '	D10 - 100	(50 µm)					
12B - 4096 (~1.22 μm) 11B - 2048 (~2.441 μm)	D50 - 500 (10 μ D40 - 400 (12.5		D08 - 80 06B - 64	(62.5 μm) (78.125 μm	1)				
2D0 - 2000 (2.5 μm)			D04 - 40	(125 µm)	.,				
1D6 - 1600 (3.125 μm)			05B - 32	(156.25 µm	1)				
10B - 1024 (~4.882 μm)			04B - 16	(312.5 µm)					
1D0 - 1000 (5 μm)		1 /	03B - 8	(625 µm)					
D80 - 800 (6.25 μm)	reset to 5 µm) (for IC on)625 μm) lv)							
	• • •	'y <i>)</i>							
Minimum edge separa	tion								
IA , IB and IC: K - 0.07 µs (15 MHz)	E - 4 μs (0.25 MHz)	AV : A - N	.Ι/Δ						
A - 0.12 μs (8 MHz)	F - 5 µs (0.2 MHz)	A - IV	V/ /\						
B - 0.5 μs (2 MHz)	G - 10 μs (0.1 MHz)	The custome	r's controll	er must sup	port the				
C - 1 µs (1 MHz)	H - 20 μs (0.05 MHz)	selected edg	je separati	on time eve	en if the				
D - 2 μs (0.5 MHz)		encoder is us	sed below t	he maximur	n speed.				
Reference mark senso	r								
_	ark sensor t be ordered with reference	mark. If require	d, the cover	foil can be in	stalled ov	er the			
reference mark.									
B - Without reference									
	e mark sensor but with p	eriodic referer	nce impulse	as per sca	le pitch (every			
5 mm)									
Reference periods co	orrespond to pole length of	magnetisation.	Magnetic sc	ale must be o	ordered w	ith no			
Cable length 10 - 1.0 m (standard)									
	or 13 - 13 m cable if special	ontion OM is chas	sen)						
(c.g. 15 - 1.5 III cable	or 15 15 in cable it special	opaon ow is crios	ı)						
Connector									
A - 9 pin D type plug		- 15 pin HD ty							
D - 15 pin D type plug		- 15 pin D typ							
F - Flying lead, no con		- 9 pin D type							
	U	- 7 pin DIN EN	N60130-9 p	lug					
Special requirements			,						
	ments (standard) 40 -			tube for cab	le				
02 - Shortened reaction	n time OM -	Cable length ir	n meters						

Not all part number combinations are valid. Please refer to the table of available combinations on the next page for available options.

M2 - Shortened reaction time and cable in meters

4M - Protective stainless-steel tube and cable in meters

07 - Additional alarm output

19 - Stainless steel housing

10 - Not potted, protected to IP50

Table of available combinations

Series	Output type	Interpolation factor	Minimum edge separation	Reference mark	Cable length	Connector	Special requirements
		PRG**	А				00 / 10 / 19 / 40 / 0M / 4M
		xxx*	K/A/B/C/D/E/ F/G/H	A/B/C			
	IC	04B	A/B/C/D/E/F /G/H	D. (C			
		03B	B/C/D/E/F/ G/H	B/C		A**/D/H/F /U**	00 / 02 / 07 / 10
	IA	xxx*	K/A/B/C/D/E/ F/G/H	A/B/C			/19/40/0M/ M2/4M
LM15		04B	A/B/C/D/E/F /G/H	B / C	10***		
		03B	B/C/D/E/F/ G/H	в/С			
		xxx*	K/A/B/C/D/E/ F/G/H	A/B/C	-		
	IB	04B	A/B/C/D/E/F /G/H	D./C		A/F/U	00/10/19/40
		03B	B/C/D/E/F/ G/H	B/C			/ 0M / 4M
	AV	000	А	A/B/C		A/L/P/F	

^{*} See chapter **Available resolutions** for available interpolation factors.

For the part numbering of the MS incremental magnetic scale, refer to the MSD01 data sheet at **RLS Media center**.

^{**} Not available with special option 07.

^{***} See the Output Type section for the max cable lenght for each output type.

Available resolutions

Table of available resolutions

Part number	Pole length [mm]	Interpolation factor	Resolution [μm]
13B	_	213	~0.6
12B	_	212	~1.22
11B		211	~2.441
2D0	_	2000	2.5
1D6		1600	3.125
10B		210	~4.882
1D0	_	1000	5
D80	_	800	6.25
09B	_	29	~9.765
D50		500	10
D40		400	12.5
D32	5	320	15.625
08B	_	28	~19.531
D20		200	25
D16	_	160	31.25
07B	_	27	39.0625
D10		100	50
D08		80	62.5
06B		26	78.125
D04	_	40	125
05B	_	25	156.25
04B	_	24	312.5
03B		23	625

Resolutions calculation

Posalution [um]	Pole length [µm]	5000
Resolution [µm] =		Interpolation factor

Accessories

USB encoder interface **E201-9Q**

(Compatible only with LM15IC)

Programmable interface **UPRG01**

(Compatible only with LM15IC)

Head office

RLS Merilna tehnika d. o. o.

Poslovna cona Žeje pri Komendi Pod vrbami 2 SI-1218 Komenda Slovenia **T** +386 1 5272100 **E** mail@rls.si

www.rls.si

Global support

Visit our website to contact your nearest sales representative.

Document issues

Date	Issue	Page	Description
15. 9. 2023	7	16	Menu (button) Max Speed Calculator added
13. 10. 2023	8	10	Set-up time amended
4. 12. 2024	9	17	Table of available combinations amended
28. 1. 2025	10	10	Diagram 2 amended

This product is not designed or intended for use outside the environmental limitations and operating parameters expressly stated on the product's datasheet. Products are not designed or intended for use in medical, military, aerospace, automotive or oil & gas applications or any safety-critical applications where a failure of the product could cause severe environmental or property damage, personal injury or death. Any use in such applications must be specifically agreed to by seller in writing, and is subject to such additional terms as the seller may impose in its sole discretion. Use of products in such applications is at buyer's own risk, and buyer will indemnify and hold harmless seller and its affiliates against any liability, loss, damage or expense arising from such use. Information contained in this datasheet was derived from product testing under controlled laboratory conditions and data reported thereon is subject to the stated tolerances and variations, or if none are stated, then to tolerances and variations consistent with usual trade practices and testing methods. The product's performance outside of laboratory conditions, including when one or more operating parameters is at its maximum range, may not conform to the product's datasheet. Further, information in the product's datasheet does not reflect the performance of the product in any application, end-use or operating environment buyer or its customer may put the product to. Seller and its affiliates make no recommendation, warranty or representation as to the suitability of the product for buyer's application, use, end-product, process or combination with any other product or as to any results buyer or its customer might obtain in their use of the product. Buyer should use its own knowledge, judgment, expertise and testing in selecting the product for buyer's application, end-use and/ or operating environment, and should not rely on any oral or written statement, representation, or samples made by seller or its affiliates for any purpose. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH IN THE SELLER'S TERMS AND CONDITIONS OF SALE, SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED WITH RESPECT TO THE PRODUCT, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE, WHICH ARE DISCLAIMED AND EXCLUDED. All sales are subject to seller's exclusive terms and conditions of sale which, where the seller is (a) RLS Merilna tehnika d. o. o., are available at https://www.rls.si/eng/salesterms, (b) Renishaw, Inc., are available at https://www.renishaw.com/legal/en/--42186, or (c) another person, are available on request, and in each case, are incorporated herein by reference, and are the exclusive terms of sale. No other terms and conditions apply. Buyer is not authorized to make any statements or representations that expand upon or extend the environmental limitations and operating parameters of the products, or which imply permitted usage outside of that expressly stated on the datasheet or agreed to in writing by seller.

RLS Merilna tehnika d. o. o. has made considerable effort to ensure the content of this document is correct at the date of publication but makes no warranties or representations regarding the content. RLS Merilna tehnika d. o. o. excludes liability, howsoever arising, for any inaccuracies in this document.